Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nat Chem Biol ; 11(10): 772-8, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26302480

RESUMEN

In eukaryotes, cytosolic monothiol glutaredoxins are proteins implicated in intracellular iron trafficking and sensing via their bound [2Fe-2S] clusters. We define a new role of human cytosolic monothiol glutaredoxin-3 (GRX3) in transferring its [2Fe-2S] clusters to human anamorsin, a physical and functional protein partner of GRX3 in the cytosol, whose [2Fe-2S] cluster-bound form is involved in the biogenesis of cytosolic and nuclear Fe-S proteins. Specific protein recognition between the N-terminal domains of the two proteins is the mandatory requisite to promote the [2Fe-2S] cluster transfer from GRX3 to anamorsin.


Asunto(s)
Proteínas Portadoras/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Hierro-Azufre/metabolismo , Hierro/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/genética , Citosol/metabolismo , Escherichia coli/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Modelos Biológicos , Simulación del Acoplamiento Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas
2.
Proc Natl Acad Sci U S A ; 111(17): 6203-8, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24733926

RESUMEN

Monothiol glutaredoxins play a crucial role in iron-sulfur (Fe/S) protein biogenesis. Essentially all of them can coordinate a [2Fe-2S] cluster and have been proposed to mediate the transfer of [2Fe-2S] clusters from scaffold proteins to target apo proteins, possibly by acting as cluster transfer proteins. The molecular basis of [2Fe-2S] cluster transfer from monothiol glutaredoxins to target proteins is a fundamental, but still unresolved, aspect to be defined in Fe/S protein biogenesis. In mitochondria monothiol glutaredoxin 5 (GRX5) is involved in the maturation of all cellular Fe/S proteins and participates in cellular iron regulation. Here we show that the structural plasticity of the dimeric state of the [2Fe-2S] bound form of human GRX5 (holo hGRX5) is the crucial factor that allows an efficient cluster transfer to the partner proteins human ISCA1 and ISCA2 by a specific protein-protein recognition mechanism. Holo hGRX5 works as a metallochaperone preventing the [2Fe-2S] cluster to be released in solution in the presence of physiological concentrations of glutathione and forming a transient, cluster-mediated protein-protein intermediate with two physiological protein partners receiving the [2Fe-2S] cluster. The cluster transfer mechanism defined here may extend to other mitochondrial [2Fe-2S] target proteins.


Asunto(s)
Proteínas Hierro-Azufre/metabolismo , Hierro/metabolismo , Proteínas Mitocondriales/metabolismo , Azufre/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Glutarredoxinas/química , Glutarredoxinas/metabolismo , Glutatión/metabolismo , Humanos , Proteínas Hierro-Azufre/química , Espectroscopía de Resonancia Magnética , Proteínas Mitocondriales/química , Modelos Moleculares , Unión Proteica , Estructura Cuaternaria de Proteína , Soluciones , Espectrofotometría Ultravioleta
3.
Proc Natl Acad Sci U S A ; 110(18): 7136-41, 2013 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-23596212

RESUMEN

Biogenesis of iron-sulfur cluster proteins is a highly regulated process that requires complex protein machineries. In the cytosolic iron-sulfur protein assembly machinery, two human key proteins--NADPH-dependent diflavin oxidoreductase 1 (Ndor1) and anamorsin--form a stable complex in vivo that was proposed to provide electrons for assembling cytosolic iron-sulfur cluster proteins. The Ndor1-anamorsin interaction was also suggested to be implicated in the regulation of cell survival/death mechanisms. In the present work we unravel the molecular basis of recognition between Ndor1 and anamorsin and of the electron transfer process. This is based on the structural characterization of the two partner proteins, the investigation of the electron transfer process, and the identification of those protein regions involved in complex formation and those involved in electron transfer. We found that an unstructured region of anamorsin is essential for the formation of a specific and stable protein complex with Ndor1, whereas the C-terminal region of anamorsin, containing the [2Fe-2S] redox center, transiently interacts through complementary charged residues with the FMN-binding site region of Ndor1 to perform electron transfer. Our results propose a molecular model of the electron transfer process that is crucial for understanding the functional role of this interaction in human cells.


Asunto(s)
Flavoproteínas/biosíntesis , Péptidos y Proteínas de Señalización Intracelular/biosíntesis , Proteínas Hierro-Azufre/biosíntesis , Oxidorreductasas/biosíntesis , Biosíntesis de Proteínas , Transporte de Electrón , Mononucleótido de Flavina/metabolismo , Flavoproteínas/química , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Proteínas Hierro-Azufre/química , Modelos Biológicos , Modelos Moleculares , Oxidorreductasas/química , Unión Proteica , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína
4.
J Biol Inorg Chem ; 18(8): 883-93, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23989406

RESUMEN

The eukaryotic anamorsin protein family, which has recently been proposed to be part of an electron transfer chain functioning in the early steps of cytosolic iron-sulfur (Fe/S) protein biogenesis, is characterized by a largely unstructured domain (CIAPIN1) containing two conserved cysteine-rich motifs (CX8CX2CXC and CX2CX7CX2C) whose Fe/S binding properties and electronic structures are not well defined. Here, we found that (1) each motif in human anamorsin is able to bind independently a [2Fe-2S] cluster through its four cysteine residues, the binding of one cluster mutually excluding the binding of the second, (2) the reduced [2Fe-2S](+) clusters exhibit a unique electronic structure with considerable anisotropy in their coordination environment, different from that observed in reduced, plant-type and vertebrate-type [2Fe-2S] ferredoxin centers, (3) the reduced cluster bound to the CX2CX7CX2C motif reveals an unprecedented valence localization-to-delocalization transition as a function of temperature, and (4) only the [2Fe-2S] cluster bound to the CX8CX2CXC motif is involved in the electron transfer with its physiological protein partner Ndor1. The unique electronic properties of both [2Fe-2S] centers can be interpreted by considering that both cysteine-rich motifs are located in a highly unstructured and flexible protein region, whose local conformational heterogeneity can induce anisotropy in metal coordination. This study contributes to the understanding of the functional role of the CIAPIN1 domain in the anamorsin family, suggesting that only the [2Fe-2S] cluster bound to the CX8CX2CXC motif is indispensable in the electron transfer chain assembling cytosolic Fe/S proteins.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Hierro-Azufre/metabolismo , Secuencias de Aminoácidos , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón , Electrones , Flavoproteínas/química , Flavoproteínas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Proteínas Hierro-Azufre/química , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Unión Proteica , Espectroscopía de Mossbauer
5.
J Struct Biol ; 180(1): 190-200, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22842048

RESUMEN

Twin CX(9)C proteins constitute a large protein family among all eukaryotes; are putative substrates of the mitochondrial Mia40-dependent import machinery; contain a coiled coil-helix-coiled coil-helix (CHCH) fold stabilized by two disulfide bonds as exemplified by three structures available for this family. However, they considerably differ at the primary sequence level and this prevents an accurate prediction of their structural models. With the aim of expanding structural information on CHCH proteins, here we structurally characterized human CHCHD5 and CHCHD7. While CHCHD5 has two weakly interacting CHCH domains which sample a range of limited conformations as a consequence of hydrophobic interactions, CHCHD7 has a third helix hydrophobically interacting with an extension of helix α2, which is part of the CHCH domain. Upon reduction of the disulfide bonds both proteins become unstructured exposing hydrophobic patches, with the result of protein aggregation/precipitation. These results suggest a model where the molecular interactions guiding the protein recognition between Mia40 and the disulfide-reduced CHCHD5 and CHCHD7 substrates occurs in vivo when the latter proteins are partially embedded in the protein import pore of the outer membrane of mitochondria.


Asunto(s)
Proteínas de la Membrana/química , Proteínas Mitocondriales/química , Modelos Moleculares , Proteínas/química , Secuencia de Aminoácidos , Secuencia de Consenso , Cistina/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Datos de Secuencia Molecular , Peso Molecular , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Análisis de Secuencia de Proteína
6.
Biochim Biophys Acta ; 1804(1): 223-34, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19836473

RESUMEN

Conversion of peptides and proteins from their native states into amyloid fibrillar aggregates is the hallmark of a number of pathological conditions, including Alzheimer's disease and amyloidosis. Evidence is accumulating that soluble oligomers, as opposed to mature fibrils, mediate cellular dysfunction, ultimately leading to disease onset. In this study, we have explored the ability of alkaline pH solutions, which have remained relatively unexplored so far, to form a partially folded state of the N-terminal domain of the Escherichia coli protein HypF (HypF-N), which subsequently assembles to form stable soluble oligomers. Results showed that HypF-N unfolds at high pH via a two-state process. Characterization of the resulting alkaline-unfolded state by near- and far-UV circular dichroism, intrinsic and ANS-derived fluorescence and DLS indicated characteristics of a monomeric, premolten globule state. Interestingly, alkaline-unfolded HypF-N aggregates, at high concentration in the presence of low concentrations of TFE, into stable oligomers. These are able to bind amyloid-specific dyes, such as Congo red, ThT, and ANS, contain extensive beta-sheet structure, as detected with far-UV circular dichroism, and have a height of 2.0-3.9 nm when analysed using atomic force microscopy. This study, which complements our previous one in which morphologically, structurally, and tinctorially similar oligomers were formed at low and nearly neutral pH values by the same protein, offers opportunities to explore the fine differences existing in the mechanism of formation of these species under different conditions, in their precise molecular structure and in their ability to cause cellular dysfunction.


Asunto(s)
Amiloide/química , Transferasas de Carboxilo y Carbamoilo/química , Proteínas de Escherichia coli/química , Conformación Proteica , Pliegue de Proteína , Benzotiazoles , Transferasas de Carboxilo y Carbamoilo/efectos de los fármacos , Dicroismo Circular , Rojo Congo/química , Proteínas de Escherichia coli/efectos de los fármacos , Concentración de Iones de Hidrógeno , Microscopía de Fuerza Atómica , Modelos Moleculares , Desnaturalización Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Espectrometría de Fluorescencia , Tiazoles/química , Trifluoroetanol/farmacología , Triptófano/química
7.
Mol Biochem Parasitol ; 147(1): 85-94, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16529828

RESUMEN

Amoebapores, the pore-forming proteins of Entamoeba histolytica, are major pathogenicity factors of the parasite. Upon a comprehensive survey in the recently completed genome data sets for the protozoon, we identified in addition to the three amoebapore genes, 16 genes which are constitutively expressed and code for structurally similar proteins, all belonging to the family of saposin-like proteins. Here, we recombinantly expressed in bacteria a defined single entity of this expansive amoebic protein family, namely SAPLIP 3. The protein consists of the saposin-like domain only, comparable to amoebapores, and we characterized its interactions with membranes using different assays. In contrast to amoebapores, SAPLIP 3 neither forms pores in liposomes nor permeabilizes bacterial membranes. However, SAPLIP 3 induces leaky fusion of lipid vesicles as evidenced by fluorescence microscopic analysis and by using a fusion assay that monitors the dequenching of a lipophilic dye. The membrane-fusogenic activity of SAPLIP 3 which is dependent on the presence of negatively charged lipids and on acidic pH resembles in combination with the negative surface charge of the protein characteristics of human saposin C. Beside its function as a cofactor of sphingolipid hydrolysing enzymes, the human protein is considered to be involved in the reorganization of lysosomal compartments due to its fusogenic activity. We hypothesize that in the amoeba, SAPLIP 3 fulfils a similar function in the multifarious endo- and exocytotic transport processes.


Asunto(s)
Entamoeba histolytica/fisiología , Fusión de Membrana , Proteínas Protozoarias/metabolismo , Saposinas/metabolismo , Animales , Endocitosis , Entamoeba histolytica/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Canales Iónicos/metabolismo , Liposomas/metabolismo , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/farmacología , Saposinas/química , Saposinas/genética , Saposinas/farmacología
8.
Dev Comp Immunol ; 30(7): 597-606, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16386304

RESUMEN

The body fluid of earthworms is known to contain a variety of cytolytic and antibacterial activities to combat potential pathogens that may migrate from the environment into the body cavity. In the annelid Eisenia fetida, a multi-gene family exists that give rise to several isoforms, which display hemolytic and antibacterial activity. The hemolytic activity of lysenin, a major isoform, is known to be strictly dependent on sphingomyelin. As bacteria are devoid of sphingomyelin, the nature of the antibacterial activity of lysenin-like proteins appeared obscure. Here, we report the recombinant expression of lysenin, a defined single entity, which exerted hemolytic, antibacterial and membrane-permeabilizing activity comparable to that of the natural counterpart. Experiments using fluorescence resonance energy transfer spectroscopy with liposomes and planar lipid bilayers demonstrated membrane insertion and single channel fluctuations in the presence of sphingomyelin. By monitoring the lipid specificity of lysenin and its molecular organization on different target cell membranes, it became evident that oligomerization to stable pore-like structures occurs on erythrocytes but does not occur on bacterial membranes. However, bacterial membranes became permeabilized by lysenin, albeit much slower. Accordingly, lysenin appears to display sphingomyelin-dependent and sphingomyelin-independent activities to kill various foreign intruders of the earthworm's coelomic cavity.


Asunto(s)
Antiinfecciosos/farmacología , Oligoquetos/química , Proteínas/farmacología , Proteínas Recombinantes/biosíntesis , Animales , Antiinfecciosos/metabolismo , Membrana Eritrocítica/efectos de los fármacos , Hemólisis , Membrana Dobles de Lípidos/química , Liposomas/química , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Oligoquetos/microbiología , Proteínas/genética , Proteínas/metabolismo , Proteínas Recombinantes/farmacología , Espectrometría de Fluorescencia , Esfingomielinas/química , Toxinas Biológicas
9.
Chem Biol ; 18(6): 794-804, 2011 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21700214

RESUMEN

Human anamorsin was implicated in cytosolic iron-sulfur (Fe/S) protein biogenesis. Here, the structural and metal-binding properties of anamorsin and its interaction with Mia40, a well-known oxidoreductase involved in protein trapping in the mitochondrial intermembrane space (IMS), were characterized. We show that (1), anamorsin contains two structurally independent domains connected by an unfolded linker; (2), the C-terminal domain binds a [2Fe-2S] cluster through a previously unknown cysteine binding motif in Fe/S proteins; (3), Mia40 specifically introduces two disulfide bonds in a twin CX(2)C motif of the C-terminal domain; (4), anamorsin and Mia40 interact through an intermolecular disulfide-bonded intermediate; and (5), anamorsin is imported into mitochondria. Hence, anamorsin is the first identified Fe/S protein imported into the IMS, raising the possibility that it plays a role in cytosolic Fe/S cluster biogenesis also once trapped in the IMS.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Cisteína , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Hierro/metabolismo , Proteínas Hierro-Azufre/química , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Oxidación-Reducción , Unión Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , Azufre/metabolismo
10.
J Mol Biol ; 398(4): 600-13, 2010 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-20346957

RESUMEN

Aggregation of peptides and proteins into insoluble amyloid fibrils or related intracellular inclusions is the hallmark of many degenerative diseases, including Alzheimer's disease, Parkinson's disease, and various forms of amyloidosis. In spite of the considerable progress carried out in vitro in elucidating the molecular determinants of the conversion of purified and isolated proteins into amyloid fibrils, very little is known on factors governing this process in the complex environment of living organisms. Taking advantage of increasing evidence that bacterial inclusion bodies consist of amyloid-like aggregates, we have expressed in Escherichia coli both wild type and 21 single-point mutants of the N-terminal domain of the E. coli protein HypF. All variants were expressed as folding-incompetent units in a controlled manner, at low and comparable levels. Their solubilities were measured by quantifying the protein amount contained in the soluble and insoluble fractions by Western blot analysis. A significant negative correlation was found between the solubility of the variants in E. coli and their intrinsic propensity to form amyloid fibrils, predicted using an algorithm previously validated experimentally in vitro on a number of unfolded peptides and proteins, and considering hydrophobicity, beta-sheet propensity, and charge as major sequence determinants of the aggregation process. These findings show that the physicochemical parameters previously recognized to govern amyloid formation by fully or partially unfolded proteins are largely applicable in vivo and pave the way for the molecular exploration of a process as complex as protein aggregation in living organisms.


Asunto(s)
Transferasas de Carboxilo y Carbamoilo/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Expresión Génica , Amiloide/metabolismo , Western Blotting/métodos , Transferasas de Carboxilo y Carbamoilo/química , Transferasas de Carboxilo y Carbamoilo/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Pliegue de Proteína , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA