Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Environ Sci Technol ; 54(21): 13953-13962, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33095565

RESUMEN

Heterotrophic denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are two microbial processes competing for two shared resources, namely, nitrate and organic carbon (COD). Their competition has great implications for nitrogen loss, conservation, and greenhouse gas emissions. Nevertheless, a comprehensive and mechanistic understanding of the governing factors for this competition is still lacking. We applied the resource-ratio theory to study this competition and validated the theory with experimental data from continuous cultures reported in the literature. Based on this theory, we revealed that influent COD/N ratio alone was not sufficient to predict the competition outcome as the boundary values for different competition outcomes changed substantially with influent resource concentrations. The stoichiometry of the two processes was determinative for the boundaries, whereas the affinity for the shared resources (KS), maximum specific growth rate (µmax) of the two species, and the dilution rate had significant impacts as well but mainly at low influent resource concentrations (e.g., <100 µM nitrate). The presented approach allows for a more comprehensive understanding of the parameters controlling microbial competition. The computational comparison between continuous and batch cultures could explain seemingly conflicting experimental results as to the impact of the COD/N ratio. The results also include testable hypotheses and tools for understanding and managing the fate of nitrate in ecosystems, which could also be applied more widely to other species competing for two shared resources.


Asunto(s)
Compuestos de Amonio , Desnitrificación , Ecosistema , Nitratos , Nitrógeno , Oxidación-Reducción
2.
Water Sci Technol ; 81(5): 949-960, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32541113

RESUMEN

Foam potential and viscometer ramp tests (VRTs) were conducted for three municipal wastewater treatment plants to determine if these methods can relate to mechanisms of foaming to physical and biological constituents in sludge. At all plants, digester volatile solids (VS) concentration correlated (R2 > 0.41) with increases in plastic viscosity, a VRT parameter corresponding to foaming risk. Plastic viscosity also correlated with foam-causing bacteria Gordonia (R2 = 0.38). Foam potential test values increased with Microthrix parvicella (R2> 0.28). For one plant, suspected foam-causing bacteria Mycobacterium negatively correlated with parameters representing foam risk. Microscopic filament counting correlated (R2 = 0.97) with quantitative polymerase chain reaction (qPCR) for Gordonia, suggesting that the more accessible counting method can reliably quantify foam-causing bacteria. Foam potential tests and VRTs resulted in plant-specific correlations with foam-related constituents. Therefore, these tests may provide useful evidence when investigating causes of digester foam events.


Asunto(s)
Actinobacteria , Aguas del Alcantarillado , Reactores Biológicos , Reología , Eliminación de Residuos Líquidos , Aguas Residuales
3.
Environ Sci Technol ; 53(21): 12935-12944, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31593444

RESUMEN

In water resource recovery facilities, sidestream biological nitrogen removal via anaerobic ammonium oxidation (anammox) is more energy and cost efficient than conventional nitrification-denitrification. However, under mainstream conditions, nitrite oxidizing bacteria (NOB) out-select anammox bacteria for nitrite produced by ammonium oxidizing bacteria (AOB). Therefore, nitrite production is the bottleneck in mainstream anammox nitrogen removal. Nitrate-dependent denitrifying anaerobic methane oxidizing archaea (n-damo) oxidize methane and reduce nitrate to nitrite. The nitrite supply challenge in mainstream anammox implementation could be solved with a microbial community of AOB, NOB, n-damo, and anammox with methane from anaerobic sludge digestion or a mainstream anaerobic membrane bioreactor (AnMBR). The cost and environmental impact of traditional nitrification/dentrification relative to AOB/anammox and AOB/anammox/n-damo systems, with and without an AnMBR, were compared with a stoichiometric model. AnMBR implementation reduced costs and emission rates at moderate to high nutrient loading by lowering aeration and sludge handling demands while increasing methane available for cogeneration. AnMBR/AOB/anammox systems reduced cost and GHG emission by up to $0.303/d/m3 and 1.72 kg equiv. CO2/d/m3, respectively, while AnMBR/AOB/anammox/n-damo systems saw a similar reduction of at least $0.300/d/m3 and 1.65 kg equiv. CO2/d/m3 in addition to alleviating the necessity to stop nitrification at nitrate, allowing easier aeration control.


Asunto(s)
Compuestos de Amonio , Aguas Residuales , Anaerobiosis , Reactores Biológicos , Desnitrificación , Metano , Nitrógeno , Oxidación-Reducción
4.
Biotechnol Bioeng ; 113(9): 1962-74, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26887287

RESUMEN

For engineers, it is interesting to gain insight in the effect of control strategies on microbial communities, on their turn influencing the process behavior and its stability. This contribution assesses the influence of process dynamics on the microbial community in a biofilm reactor for nitrogen removal, which was controlled according to several strategies aiming at nitrite accumulation. The process dataset, combining conventional chemical and physical data with molecular information, was analyzed through a correlation analysis and in a simulation study. During nitrate formation, an increased nitrogen loading rate (NLR) resulted in a drop of the bulk liquid oxygen concentration without resulting in nitrite accumulation. A biofilm model was able to reproduce the bulk liquid nitrogen concentrations in two periods before and after this increased NLR. As the microbial parameters calibrated for the ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in both periods were different, it was concluded that the increased NLR governed an AOB and NOB population shift. Based on the molecular data, it was assumed that each period was typified by one dominant AOB and probably several subdominant NOB populations. The control strategies for nitrite accumulation influenced the bulk liquid composition by controlling the competition between AOB and NOB. Biotechnol. Bioeng. 2016;113: 1962-1974. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Bacterias/metabolismo , Biopelículas , Reactores Biológicos/microbiología , Modelos Biológicos , Nitrógeno/metabolismo , Bacterias/química , Simulación por Computador , Nitrificación
5.
Environ Sci Technol ; 49(18): 11003-10, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26248168

RESUMEN

In aerobic granular sludge (AGS), the growth of nitrite oxidizing bacteria (NOB) can be uncoupled from the nitrite supply of ammonia oxidizing bacteria (AOB). Besides, unlike for conventional activated sludge, Nitrobacter was found to be the dominant NOB and not Nitrospira. To explain these experimental observations, two possible pathways have been put forward in literature. The first one involves the availability of additional nitrite from partial denitrification (nitrite-loop) and the second one consists of mixotrophic growth of Nitrobacter in the presence of acetate (ping-pong). In this contribution, mathematical models were set up to assess the possibility of these pathways to explain the reported observations. Simulation results revealed that both pathways influenced the nitrifier distribution in the granules. The nitrite-loop pathway led to an elevated NOB/AOB ratio, while mixotrophic growth of Nitrobacter guaranteed their predominance among the NOB population. Besides, mixotrophic growth of Nitrobacter could lead to NO emission from AGS. An increasing temperature and/or a decreasing oxygen concentration led to an elevated NOB/AOB ratio and increased NO emissions.


Asunto(s)
Bacterias/crecimiento & desarrollo , Desnitrificación , Nitritos/metabolismo , Aguas del Alcantarillado/microbiología , Aerobiosis , Bacterias/metabolismo , Biomasa , Reactores Biológicos/microbiología , Modelos Biológicos , Óxido Nítrico/metabolismo , Nitrobacter/metabolismo , Nitrógeno/metabolismo , Oxidación-Reducción
6.
Water Res ; 255: 121479, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38520777

RESUMEN

Aerobic granular sludge (AGS) at wastewater treatment plants (WWTPs) are known to produce nitrous oxide (N2O), a greenhouse gas which has a ∼300 times higher global warming potential than carbon dioxide. In this research, we studied N2O emissions from different sizes of AGS developed at a dissolved oxygen (DO) level of 2 mgO2/L while exposing them to disturbances at various DO concentrations ranging from 1 to 4 mgO2/L. Five different AGS size classes were studied: 212-600 µm, 600-1000 µm, 1000-1400 µm, 1400-2000 µm, and > 2000 µm. Metagenomic data showed N2O reductase genes (nosZ) were more abundant in the smaller AGS sizes which aligned with the observation of higher N2O reduction rates in small AGS under anaerobic conditions. However, when oxygen was present, the activity measurements of N2O emission showed an opposite trend compared to metagenomic data, smaller AGS (212 to 1000 µm) emitted significantly higher N2O (p < 0.05) than larger AGS (1000 µm to >2000 µm) at DO of 2, 3, and 4 mgO2/L. The N2O emission rate showed positive correlation with both oxygen levels and nitrification rate. This pattern indicates a connection between N2O emission and nitrification. In addition, the data suggested the penetration of oxygen into the anoxic zone of granules might have hindered nitrous oxide reduction, resulting in incomplete denitrification stopping at N2O and consequently contributing to an increase in N2O emissions. This work sets the stage to better understand the impacts of AGS size on N2O emissions in WWTPs under different disturbance of DO conditions, and thus ensure that wastewater treatment will comply with possible future regulations demanding lowering greenhouse gas emissions in an effort to combat climate change.

7.
Water Res ; 254: 121415, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38479175

RESUMEN

Wastewater Based Epidemiology (WBE) of COVID-19 is a low-cost, non-invasive, and inclusive early warning tool for disease spread. Previously studied WBE focused on sampling at wastewater treatment plant scale, limiting the level at which demographic and geographic variations in disease dynamics can be incorporated into the analysis of certain neighborhoods. This study demonstrates the integration of demographic mapping to improve the WBE of COVID-19 and associated post-COVID disease prediction (here kidney disease) at the neighborhood level using machine learning. WBE was conducted at six neighborhoods in Seattle during October 2020 - February 2022. Wastewater processing and RT-qPCR were performed to obtain SARS-CoV-2 RNA concentration. Census data, clinical data of COVID-19, as well as patient data of acute kidney injury (AKI) cases reported during the study period were collected and the distribution across the city was studied using Geographic Information System (GIS) mapping. Further, we analyzed the data set to better understand socioeconomic impacts on disease prevalence of COVID-19 and AKI per neighborhood. The heterogeneity of eleven demographic factors (such as education and age among others) was observed within neighborhoods across the city of Seattle. Dynamics of COVID-19 clinical cases and wastewater SARS-CoV-2 varied across neighborhood with different levels of demographics. Machine learning models trained with data from the earlier stages of the pandemic were able to predict both COVID-19 and AKI incidence in the later stages of the pandemic (Spearman correlation coefficient of 0·546 - 0·904), with the most predictive model trained on the combination of wastewater data and demographics. The integration of demographics strengthened machine learning models' capabilities to predict prevalence of COVID-19, and of AKI as a marker for post-COVID sequelae. Demographic-based WBE presents an effective tool to monitor and manage public health beyond COVID-19 at the neighborhood level.


Asunto(s)
Lesión Renal Aguda , COVID-19 , Humanos , Salud Pública , ARN Viral , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales , COVID-19/epidemiología , Factores Socioeconómicos
8.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38365232

RESUMEN

Ammonia-oxidizing archaea (AOA) are among the most ubiquitous and abundant archaea on Earth, widely distributed in marine, terrestrial, and geothermal ecosystems. However, the genomic diversity, biogeography, and evolutionary process of AOA populations in subsurface environments are vastly understudied compared to those in marine and soil systems. Here, we report a novel AOA order Candidatus (Ca.) Nitrosomirales which forms a sister lineage to the thermophilic Ca. Nitrosocaldales. Metagenomic and 16S rRNA gene-read mapping demonstrates the abundant presence of Nitrosomirales AOA in various groundwater environments and their widespread distribution across a range of geothermal, terrestrial, and marine habitats. Terrestrial Nitrosomirales AOA show the genetic capacity of using formate as a source of reductant and using nitrate as an alternative electron acceptor. Nitrosomirales AOA appear to have acquired key metabolic genes and operons from other mesophilic populations via horizontal gene transfer, including genes encoding urease, nitrite reductase, and V-type ATPase. The additional metabolic versatility conferred by acquired functions may have facilitated their radiation into a variety of subsurface, marine, and soil environments. We also provide evidence that each of the four AOA orders spans both marine and terrestrial habitats, which suggests a more complex evolutionary history for major AOA lineages than previously proposed. Together, these findings establish a robust phylogenomic framework of AOA and provide new insights into the ecology and adaptation of this globally abundant functional guild.


Asunto(s)
Amoníaco , Archaea , Amoníaco/metabolismo , Ecosistema , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Oxidación-Reducción , Filogenia , Suelo , Microbiología del Suelo
9.
Waste Manag Res ; 31(2): 223-31, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23308017

RESUMEN

Manure produced from confined animal farms can threaten public and environmental health if not managed properly. Herein, a full-scale commercial bioconversion operation in DeQing County, China for value-added swine manure reduction using house fly, Musca domestica L., larvae is reported. The greenhouse-assisted larvae bioreactor had a maximum daily treatment capacity of 35 m(3) fresh raw manure per day. The bioconversion process produced a fresh larvae yield of 95-120 kg m(3) fresh raw manure. This process provided an alternative animal foodstuff (having 56.9 and 23.8% protein and total fat as dry matter, respectively), as well as captured nutrients for agricultural re-utilization. Bioconversion reduced odour emission (characterized by 3-methylindole) and the Escherichia coli (E. coli) index by 94.5 and 92.0%, respectively, and reductions in total weight, moisture and total Kjeldahl nitrogen in solids were over 67.2, 80.0 and 76.0%, respectively. Yearly profit under this trial period ranged from US$33.4-46.1 per m(3). It is concluded that swine manure larvae bioconversion technology with subsequent production of value-added bio-products can be a promising avenue when considering a programme to reduce waste products in an intensive animal production system.


Asunto(s)
Moscas Domésticas/crecimiento & desarrollo , Estiércol , Administración de Residuos/métodos , Alimentación Animal/economía , Animales , Reactores Biológicos , China , Escherichia coli , Moscas Domésticas/metabolismo , Proteínas de Insectos/análisis , Proteínas de Insectos/metabolismo , Larva/metabolismo , Escatol/metabolismo , Porcinos , Administración de Residuos/economía , Administración de Residuos/instrumentación
10.
Water Res ; 233: 119758, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36812815

RESUMEN

The mainstream application of anaerobic ammonium oxidation (anammox) for sustainable N removal remains a challenge. Similarly, with recent additional stringent regulations for P discharges, it is imperative to integrate N with P removal. This research studied integrated fixed film activated sludge (IFAS) technology to simultaneously remove N and P in real municipal wastewater by combining biofilm anammox with flocculent activated sludge for enhanced biological P removal (EBPR). This technology was assessed in a sequencing batch reactor (SBR) operated as a conventional A2O (anaerobic-anoxic-oxic) process with a hydraulic retention time of 8.8 h. After a steady state operation was reached, robust reactor performance was obtained with average TIN and P removal efficiencies of 91.3 ± 4.1% and 98.4 ± 2.4%, respectively. The average TIN removal rate recorded over the last 100 d of reactor operation was 118 mg/L·d, which is a reasonable number for mainstream applications. The activity of denitrifying polyphosphate accumulating organisms (DPAOs) accounted for nearly 15.9% of P-uptake during the anoxic phase. DPAOs and canonical denitrifiers removed approximately 5.9 mg TIN/L in the anoxic phase. Batch activity assays, which showed that nearly 44.5% of TIN were removed by the biofilms during the aerobic phase. The functional gene expression data also confirmed anammox activities. The IFAS configuration of the SBR allowed operation at a low solid retention time (SRT) of 5-d without washing out biofilm ammonium-oxidizing and anammox bacteria. The low SRT, combined with low dissolved oxygen and intermittent aeration, provided a selective pressure to washout nitrite-oxidizing bacteria and glycogen-accumulating organisms, as relative abundances of.


Asunto(s)
Compuestos de Amonio , Aguas Residuales , Compuestos de Amonio/metabolismo , Oxidación Anaeróbica del Amoníaco , Bacterias/metabolismo , Reactores Biológicos/microbiología , Desnitrificación , Nitrógeno/metabolismo , Oxidación-Reducción , Aguas del Alcantarillado/microbiología
11.
Sci Total Environ ; 866: 161467, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36626989

RESUMEN

Wastewater-based epidemiology has proven to be a supportive tool to better comprehend the dynamics of the COVID-19 pandemic. As the disease moves into endemic stage, the surveillance at wastewater sub-catchments such as pump station and manholes is providing a novel mechanism to examine the reemergence and to take measures that can prevent the spread. However, there is still a lack of understanding when it comes to wastewater-based epidemiology implementation at the smaller intra-city level for better granularity in data, and dilution effect of rain precipitation at pump stations. For this study, grab samples were collected from six areas of Seattle between March-October 2021. These sampling sites comprised five manholes and one pump station with population ranging from 2580 to 39,502 per manhole/pump station. The wastewater samples were analyzed for SARS-CoV-2 RNA concentrations, and we also obtained the daily COVID-19 cases (from individual clinical testing) for each corresponding sewershed, which ranged from 1 to 12 and the daily incidence varied between 3 and 64 per 100,000 of population. Rain precipitation lowered viral RNA levels and sensitivity of viral detection but wastewater total ammonia (NH4+-N) and phosphate (PO43--P) were shown as potential chemical indicators to calibrate/level out the dilution effect. These chemicals showed the potential in improving the wastewater surveillance capacity of COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiología , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales , Calibración , Pandemias , ARN Viral
12.
Sci Total Environ ; 883: 163696, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37100124

RESUMEN

In this study, a one-stage continuous-flow membrane-hydrogel reactor integrating both partial nitritation-anammox (PN-anammox) and anaerobic digestion (AD) was designed and operated for simultaneous autotrophic nitrogen (N) and anaerobic carbon (C) removal from mainstream municipal wastewater. In the reactor, a synthetic biofilm consisting of anammox biomass and pure culture ammonia oxidizing archaea (AOA) were coated onto and maintained on a counter-diffusion hollow fiber membrane to autotrophically remove nitrogen. Anaerobic digestion sludge was encapsulated in hydrogel beads and placed in the reactor to anaerobically remove COD. During the pilot operation at three operating temperature (25, 16 and 10 °C), the membrane-hydrogel reactor demonstrated stable anaerobic COD removal (76.2 ± 15.5 %) and membrane fouling was successfully suppressed allowing a relatively stable PN-anammox process. The reactor demonstrated good nitrogen removal efficiency, with an overall removal efficiency of 95.8 ± 5.0 % for NH4+-N and 78.9 ± 13.2 % for total inorganic nitrogen (TIN) during the entire pilot operation. Reducing the temperature to 10 °C caused a temporary reduction in nitrogen removal performance and abundances of AOA and anammox. However, the reactor and microbes demonstrated the ability to adapt to the low temperature spontaneously with recovered nitrogen removal performance and microbial abundances. Methanogens in hydrogel beads and AOA and anammox on the membrane were observed in the reactor by qPCR and 16S sequencing across all operational temperatures.


Asunto(s)
Compuestos de Amonio , Aguas Residuales , Aguas del Alcantarillado , Anaerobiosis , Nitrógeno , Desnitrificación , Hidrogeles , Oxidación Anaeróbica del Amoníaco , Reactores Biológicos , Oxidación-Reducción
13.
Water Res ; 242: 120303, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37419028

RESUMEN

Application of partial nitritation (PN)-anammox to mainstream wastewater treatment faces challenges in low water temperature and low ammonium strength. In this study, a continuous flow PN-anammox reactor with hydrogel-encapsulated comammox and anammox was designed and operated for nitrogen removal from mainstream wastewater with low temperature. Long-term operation with synthetic and real wastewater as the feed demonstrated nearly complete ammonium and total inorganic nitrogen (TIN) removal by the reactor at temperatures as low as 10 °C. A significantly decreased nitrogen removal performance and biomass activity was observed in the reactor at 4 °C before a selective heating strategy was employed. A novel heating technology using radiation to heat carbon black co-encapsulated in the hydrogel matrix with biomass was used to selectively heat biomass but not water in the treatment system. This selective heating technology enabled nearly complete ammonium removal and 89.4 ± 4.3 % TIN removal at influent temperature of 4 °C and reactor temperature 5 °C. Activity tests suggested selective heating brought the biomass activity at influent temperatures of 4 °C and reactor temperature 5 °C to a level comparable to that at 10 °C. Comammox and anammox were consistently present in the system and spatially organized in the hydrogel beads as revealed by qPCR and fluorescence in-situ hybridization (FISH). The abundance of comammox largely decreased by 3 orders of magnitude during the operation at 4 °C, and rapidly recovered after the application of selective heating. The anammox-comammox technology tested in this study essentially enabled mainstream shortcut nitrogen removal, and the selective heating ensured good performance of the technology at temperature as low as 5 °C.


Asunto(s)
Compuestos de Amonio , Aguas Residuales , Oxidación Anaeróbica del Amoníaco , Reactores Biológicos , Desnitrificación , Hidrogeles , Nitrógeno , Oxidación-Reducción , Aguas del Alcantarillado , Temperatura
14.
Appl Microbiol Biotechnol ; 94(6): 1657-66, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22573276

RESUMEN

In this study, we analysed the nitrifying microbial community (ammonium-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB)) within three different aerobic granular sludge treatment systems as well as within one flocculent sludge system. Granular samples were taken from one pilot plant run on municipal wastewater as well as from two lab-scale reactors. Fluorescent in situ hybridization (FISH) and quantitative PCR (qPCR) showed that Nitrobacter was the dominant NOB in acetate-fed aerobic granules. In the conventional system, both Nitrospira and Nitrobacter were present in similar amounts. Remarkably, the NOB/AOB ratio in aerobic granular sludge was elevated but not in the conventional treatment plant suggesting that the growth of Nitrobacter within aerobic granular sludge, in particular, was partly uncoupled from the lithotrophic nitrite supply from AOB. This was supported by activity measurements which showed an approximately threefold higher nitrite oxidizing capacity than ammonium oxidizing capacity. Based on these findings, two hypotheses were considered: either Nitrobacter grew mixotrophically by acetate-dependent dissimilatory nitrate reduction (ping-pong effect) or a nitrite oxidation/nitrate reduction loop (nitrite loop) occurred in which denitrifiers reduced nitrate to nitrite supplying additional nitrite for the NOB apart from the AOB.


Asunto(s)
Bacterias/metabolismo , Nitritos/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Aguas del Alcantarillado/microbiología , Aerobiosis , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Reactores Biológicos/microbiología , Oxidación-Reducción , Aguas del Alcantarillado/química
15.
ACS ES T Water ; 2(11): 1964-1975, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37552740

RESUMEN

Wastewater based epidemiology (WBE) has emerged as a tool to track the spread of SARS-CoV-2. However, sampling at wastewater treatment plants (WWTPs) cannot identify transmission hotspots within a city. Here, we sought to understand the diurnal variations (24 h) in SARS-CoV-2 RNA titers at the neighborhood level, using pump stations that serve vulnerable communities (e.g., essential workers, more diverse communities). Hourly composite samples were collected from wastewater pump stations located in (i) a residential area and (ii) a shopping district. In the residential area, SARS-CoV-2 RNA concentration (N1, N2, and E assays) varied by up to 42-fold within a 24 h period. The highest viral load was observed between 5 and 7 am, when viral RNA was not diluted by stormwater. Normalizing peak concentrations during this time window with nutrient concentrations (N and P) enabled correcting for rainfall to connect sewage to clinical cases reported in the sewershed. Data from the shopping district pump station were inconsistent, probably due to the fluctuation of customers shopping at the mall. This work indicates pump stations serving the residential area offer a narrow time period of high signal intensity that could improve the sensitivity of WBE, and tracer compounds (N, P concentration) can be used to normalize SARS-CoV-2 signals during rainfall.

16.
Environ Sci Technol ; 45(17): 7330-7, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21744798

RESUMEN

A cyclic anaerobic/aerobic bubble column reactor was run for 420 days to study the competition for nitrite between nitrite oxidizing bacteria (NOB) and anaerobic ammonium oxidizing bacteria (Anammox) at low temperatures. An anaerobic feeding period with nitrite and ammonium in the influent followed by an aerated period was applied resulting in a biomass specific conversion rate of 0.18 ± 0.02 [gN(2) - N · gVSS(-1)· day(-1)] when the dissolved oxygen concentration was maintained at 1.0 mgO(2) · L(-1). An increase in white granules was observed in the reactor which were mainly located at the top of the settled sludge bed, whereas red granules were located at the bottom. FISH, activity tests, and qPCR techniques revealed that red biomass was dominated by Anammox bacteria and white granules by NOB. Granules from the top of the sludge bed were smaller and therefore had a higher aerobic volume fraction, a lower density, and consequently a slower settling rate. Sludge was manually removed from the top of the settled sludge bed to selectively remove NOB which resulted in an increased overall biomass specific N-conversion rate of 0.32 ± 0.02 [gN(2) - N · gVSS(-1) · day(-1)]. Biomass segregation in granular sludge reactors gives an extra opportunity to select for specific microbial groups by applying a different SRT for different microbial groups.


Asunto(s)
Bacterias Aerobias/metabolismo , Bacterias Anaerobias/metabolismo , Biomasa , Reactores Biológicos/microbiología , Frío , Aguas del Alcantarillado/microbiología , Nitrógeno/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo
17.
Water Res ; 203: 117514, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34407486

RESUMEN

Sludge granulation in continuous-flow systems is an emerging technology to intensify existing activated sludge infrastructure for nutrient removal. In these systems, the nutrient removal contributions and partitioning of microbial functions between granules and flocs can offer insights into process implementations. To this end, a reactor system that simulates the continuous-flow environment using an equal amount of initial granule and floc biomass was investigated. The two operational strategies for maintaining granule growth in the continuous-flow system were (a) the higher solids retention time (SRT) for the granules versus flocs, as well as (b) selective feeding of carbon to the granules. The SRT of the large granule fractions (>425 µm, LG) and floc/small granule fractions (<425 µm, FSG) were controlled at 20 and 2.7-6.0 days, respectively. Long term operation of the hybrid granule/floc system achieved high PO43- and NH4+ removal efficiencies. Higher polyphosphate-accumulating organisms (PAO) activity was observed in the FSG than LG, while ammonia-oxidizing bacteria (AOB) activities were similar in the two biomass fractions. Nitrite shunt was observed in the FSG, possibly due to out-competition by the high NOB activity in LG. More importantly, washing out the FSG caused a reduction in LG's AOB and PAO activity, indicating a possible dependency of LG on FSG for maintaining its nutrient removal capacity. Our findings highlighted the partitioning and potential competition/cooperation of key microbial functional groups between LG and FSG, facilitating nutrient removal in a hybrid granular activated sludge system, as well as implications for practical application of the treatment platform.


Asunto(s)
Betaproteobacteria , Aguas del Alcantarillado , Reactores Biológicos , Nitritos , Nitrógeno , Nutrientes
18.
Chemosphere ; 271: 129522, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33450421

RESUMEN

Aerobic granular sludge (AGS) is a biofilm technology that offers more treatment capacity in comparison to activated sludge. The integration of AGS into existing continuous-flow activated sludge systems is of great interest as process intensification can be achieved without the use of plastic-based biofilm carriers. Such integration should allow good separation of granules/flocs and ideally with minor retrofitting, making it an ongoing challenge. This study utilized an all-organic media carrier made of porous kenaf plant stalks with high surface areas to facilitate biofilm attachment and granule development. A 5-stage Bardenpho plant was upgraded with the addition of kenaf media and a rotary drum screen to retain the larger particles from the secondary clarifier underflow whereas flocs were selectively wasted. Startup took 5 months with a sludge volume index (SVI) reduction from >200 to 50 mL g-1. Most of the kenaf granules fell in the size range of 600-1400 µm and had a clear biofilm layer. The wet biomass density, SVI30, and SVI30/SVI5 of the kenaf granules were 1035 g L-1, 30.6 mL g-1, and 1.0, respectively, which met the standards of aerobic granules. Improved stability of biological phosphorus removal performance enabled a 25% reduction in sodium aluminate usage. Microbial activities of kenaf granules were compared with aerobic granules, showing comparable N and P removal rates and presence of ammonium-oxidizing bacteria and polyphosphate-accumulating organisms in the outer 50-60 µm layer of the granule. This work is the first viable example for integrating fully organic biofilm particles in existing continuous-flow systems.


Asunto(s)
Hibiscus , Aguas del Alcantarillado , Aerobiosis , Reactores Biológicos , Nutrientes , Eliminación de Residuos Líquidos
19.
Water Res ; 183: 116078, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32623243

RESUMEN

This study investigates the effect of physicochemical conditions on the partial nitritation and anammox treatment by immobilized ammonia oxidizers under ammonium-deplete conditions. The impact of oxygen and temperature was studied by measuring the activity of immobilized aerobic and anaerobic ammonia-oxidizing organisms (Ammonia-oxidizing bacteria (AOB) and archaea (AOA), and Anammox bacteria) embedded in polyvinyl alcohol - sodium alginate (PVA-SA) beads and in thin layer poly-ethylene glycol hydrogels. Beads and flat hydrogels were incubated in a fluidized bed reactor (FBR) and in two flow cells, respectively. Both systems were fed with synthetic wastewater (15 mg N-NH4+/L) at different temperatures (20 °C and/or 30 °C) and different dissolved oxygen (DO) concentrations (0.1, 0.3, 0.5 and/or 1 mg/L) over 152 and 207 days, respectively. The FBR system had a maximum removal rate of 1.7 g-N/m3/d at 0.1 mg O2/L, corresponding to 80% removal efficiency, while a high aerobic ammonia-oxidizing activity but a partial oxygen inhibition of Anammox bacteria were observed at higher DO concentrations. In both flow cells, nitrogen removal efficiency was highest (80%) at 30 °C and 1 mg O2/L while removal was less favorable at lower DO and lower temperature. Our results indicate a potential use of hydrogel beads for an energy efficient technology with reduced aeration demand for treating low ammonia wastewater, while layered hydrogels are a possible first step for biological treatments of wastewater using tangential flow. In addition, we provide blueprint drawings of the flow cells, which may be used to 3D-print the apparatus for other applications.


Asunto(s)
Compuestos de Amonio , Aguas Residuales , Reactores Biológicos , Desnitrificación , Nitrógeno , Oxidación-Reducción
20.
Water Res ; 179: 115865, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32388048

RESUMEN

To date, high performance of full-scale aerobic granular sludge (AGS) technology has been demonstrated on a global scale. Its further integration with existing continuous flow activated sludge (CFAS) treatment plants is the next logical step. All granular sludge reactors operated in sequencing batch reactors (SBR) mode with anaerobic feeding conditions select for growth of phosphorus and glycogen accumulating organisms (PAO and GAO, respectively), which are known to enhance sludge settling characteristics. Therefore, we hypothesized that AGS are commonly present at full-scale CFAS processes with enhanced biological phosphorus removal (EBPR) and low sludge volume index (SVI). This hypothesis was confirmed at 13 EBPR plants, where granules were found present (at plants where SVI was lower than 100 ml/g) with a strong correlation between high granule abundance and low SVI. A wide range of granule abundance was found among the plants, ranging from 0.5% to as high as 80%. Evaluations of the EBPR plant process configurations showed that high granule abundances may be related to selector design features such as high anaerobic food to mass (F/M) ratios, unmixed in-line fermentation, and high influent soluble COD fraction. Granules were also observed at a non-EBPR plant with an aerobic selector receiving high F/M feeds. Quantitative PCR and 16S rRNA gene sequencing analyses revealed higher relative gene abundance of Accumulibacter PAO and Competibacter GAO in the granules over flocs, as well as a correlation between granule abundance and some possible EPS producers such as Flavobacterium and Competibacter. Our results indicated that process configurations that select for slow-growing or EPS-producing heterotrophs play an important role for granule formation in full-scale CFAS systems as previously shown in SBR configurations.


Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado , Glucógeno , Fósforo , ARN Ribosómico 16S
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA