Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochem J ; 479(24): 2511-2527, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36504127

RESUMEN

The opportunistic pathogen Pseudomonas aeruginosa is one of leading causes of disability and mortality worldwide and the world health organisation has listed it with the highest priority for the need of new antimicrobial therapies. P. aeruginosa strains responsible for the poorest clinical outcomes express either ExoS or ExoU, which are injected into target host cells via the type III secretion system (T3SS). ExoS is a bifunctional cytotoxin that promotes intracellular survival of invasive P. aeruginosa by preventing targeting of the bacteria to acidified intracellular compartments. ExoU is a phospholipase which causes destruction of host cell plasma membranes, leading to acute tissue damage and bacterial dissemination. Fluoroquinolones are usually employed as a first line of therapy as they have been shown to be more active against P. aeruginosa in vitrothan other antimicrobial classes. Their overuse over the past decade, however, has resulted in the emergence of antibiotic resistance. In certain clinical situations, aminoglycosides have been shown to be more effective then fluoroquinolones, despite their reduced potency towards P. aeruginosa in vitro. In this study, we evaluated the effects of fluoroquinolones (moxifloxacin and ciprofloxacin) and aminoglycosides (tobramycin and gentamycin) on T3SS expression and toxicity, in corneal epithelial cell infection models. We discovered that tobramycin disrupted T3SS expression and reduced both ExoS and ExoU mediated cytotoxicity, protecting infected HCE-t cells at concentrations below the minimal inhibitory concentration (MIC). The fluoroquinolones moxifloxacin and ciprofloxacin, however, up-regulated the T3SS and did not inhibit and may have increased the cytotoxic effects of ExoS and ExoU.


Asunto(s)
Antiinfecciosos , Infecciones por Pseudomonas , Humanos , Fluoroquinolonas/farmacología , Fluoroquinolonas/metabolismo , Fluoroquinolonas/uso terapéutico , Aminoglicósidos/farmacología , Pseudomonas aeruginosa , Factores de Virulencia/metabolismo , Moxifloxacino/farmacología , Genotipo , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , ADP Ribosa Transferasas/genética , Antibacterianos/metabolismo , Tobramicina/metabolismo , Tobramicina/farmacología , Ciprofloxacina/metabolismo , Ciprofloxacina/farmacología , Antiinfecciosos/farmacología , Proteínas Bacterianas/metabolismo
2.
Biochem J ; 478(3): 647-668, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33459338

RESUMEN

Pseudomonas aeruginosa has recently been highlighted by the World Health Organisation (WHO) as a major threat with high priority for the development of new therapies. In severe P. aeruginosa infections, the phospholipase activity of the type 3 secretion system toxin, ExoU, induces lysis of target host cells and results in the poorest clinical outcomes. We have developed an integrated pipeline to evaluate small molecule inhibitors of ExoU in vitro and in cultured cell models, including a disease-relevant corneal epithelial (HCE-T) scratch and infection model using florescence microscopy and cell viability assays. Compounds Pseudolipasin A, compound A and compound B were effective in vitro inhibitors of ExoU and mitigated P. aeruginosa ExoU-dependent cytotoxicity after infection of HCE-T cells at concentrations as low as 0.5 µM. Addition of the antimicrobial moxifloxacin controlled bacterial load, allowing these assays to be extended from 6 h to 24 h. P. aeruginosa remained cytotoxic to HCE-T cells with moxifloxacin, present at the minimal inhibitory concentration for 24 h, but, when used in combination with either Pseudolipasin A, compound A or compound B, a greater amount of viable cells and scratch healing were observed. Thus, our pipeline provides evidence that ExoU inhibitors could be used in combination with certain antimicrobials as a novel means to treat infections due to ExoU producing P. aeruginosa, as well as the means to identify more potent ExoU inhibitors for future therapeutics.


Asunto(s)
Antibacterianos/farmacología , Evaluación Preclínica de Medicamentos/métodos , Pseudomonas aeruginosa/efectos de los fármacos , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Células Cultivadas , Sinergismo Farmacológico , Células Epiteliales , Epitelio Corneal/citología , Células HeLa , Ensayos Analíticos de Alto Rendimiento , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Moxifloxacino/farmacología , Conformación Proteica , Proteínas Recombinantes/efectos de los fármacos , Transfección
3.
Antimicrob Agents Chemother ; 63(12)2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31570397

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen that causes a wide range of acute and chronic infections. An increasing number of isolates have mutations that make them antibiotic resistant, making treatment difficult. To identify resistance-associated mutations we experimentally evolved the antibiotic sensitive strain P. aeruginosa PAO1 to become resistant to three widely used anti-pseudomonal antibiotics, ciprofloxacin, meropenem and tobramycin. Mutants could tolerate up to 2048-fold higher concentrations of antibiotic than strain PAO1. Genome sequences were determined for thirteen mutants for each antibiotic. Each mutant had between 2 and 8 mutations. For each antibiotic at least 8 genes were mutated in multiple mutants, demonstrating the genetic complexity of resistance. For all three antibiotics mutations arose in genes known to be associated with resistance, but also in genes not previously associated with resistance. To determine the clinical relevance of mutations uncovered in this study we analysed the corresponding genes in 558 isolates of P. aeruginosa from patients with chronic lung disease and in 172 isolates from the general environment. Many genes identified through experimental evolution had predicted function-altering changes in clinical isolates but not in environmental isolates, showing that mutated genes in experimentally evolved bacteria can predict those that undergo mutation during infection. Additionally, large deletions of up to 479kb arose in experimentally evolved meropenem resistant mutants and large deletions were present in 87 of the clinical isolates. These findings significantly advance understanding of antibiotic resistance in P. aeruginosa and demonstrate the validity of experimental evolution in identifying clinically-relevant resistance-associated mutations.

4.
Proc Biol Sci ; 286(1912): 20191794, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31594506

RESUMEN

Transposable temperate phages randomly insert into bacterial genomes, providing increased supply and altered spectra of mutations available to selection, thus opening alternative evolutionary trajectories. Transposable phages accelerate bacterial adaptation to new environments, but their effect on adaptation to the social environment is unclear. Using experimental evolution of Pseudomonas aeruginosa in iron-limited and iron-rich environments, where the cost of producing cooperative iron-chelating siderophores is high and low, respectively, we show that transposable phages promote divergence into extreme siderophore production phenotypes. Iron-limited populations with transposable phages evolved siderophore overproducing clones alongside siderophore non-producing cheats. Low siderophore production was associated with parallel mutations in pvd genes, encoding pyoverdine biosynthesis, and pqs genes, encoding quinolone signalling, while high siderophore production was associated with parallel mutations in phenazine-associated gene clusters. Notably, some of these parallel mutations were caused by phage insertional inactivation. These data suggest that transposable phages, which are widespread in microbial communities, can mediate the evolutionary divergence of social strategies.


Asunto(s)
Pseudomonas aeruginosa/fisiología , Adaptación Fisiológica , Bacteriófagos , Evolución Biológica , Mutación , Fenazinas , Sideróforos
6.
Proc Natl Acad Sci U S A ; 113(29): 8266-71, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27382184

RESUMEN

Temperate phages drive genomic diversification in bacterial pathogens. Phage-derived sequences are more common in pathogenic than nonpathogenic taxa and are associated with changes in pathogen virulence. High abundance and mobilization of temperate phages within hosts suggests that temperate phages could promote within-host evolution of bacterial pathogens. However, their role in pathogen evolution has not been experimentally tested. We experimentally evolved replicate populations of Pseudomonas aeruginosa with or without a community of three temperate phages active in cystic fibrosis (CF) lung infections, including the transposable phage, ɸ4, which is closely related to phage D3112. Populations grew as free-floating biofilms in artificial sputum medium, mimicking sputum of CF lungs where P. aeruginosa is an important pathogen and undergoes evolutionary adaptation and diversification during chronic infection. Although bacterial populations adapted to the biofilm environment in both treatments, population genomic analysis revealed that phages altered both the trajectory and mode of evolution. Populations evolving with phages exhibited a greater degree of parallel evolution and faster selective sweeps than populations without phages. Phage ɸ4 integrated randomly into the bacterial chromosome, but integrations into motility-associated genes and regulators of quorum sensing systems essential for virulence were selected in parallel, strongly suggesting that these insertional inactivation mutations were adaptive. Temperate phages, and in particular transposable phages, are therefore likely to facilitate adaptive evolution of bacterial pathogens within hosts.


Asunto(s)
Bacteriófagos/genética , Pseudomonas aeruginosa/genética , Adaptación Fisiológica , Biopelículas , Evolución Biológica , Mutación , Pseudomonas aeruginosa/crecimiento & desarrollo , Esputo/microbiología
7.
Thorax ; 72(7): 666-667, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28265031

RESUMEN

With an increase in cases of multidrug-resistant Pseudomonas aeruginosa, alternative and adjunct treatments are needed, leading to renewed interest in bacteriophage therapy. There have been few clinically relevant studies of phage therapy against chronic lung infections. Using a novel murine model that uses a natural respiratory inhalation route of infection, we show that phage therapy is an effective treatment against chronic P. aeruginosa lung infections. We also show efficacy against P. aeruginosa in a biofilm-associated cystic fibrosis lung-like environment. These studies demonstrate the potential for phage therapy in the treatment of established and recalcitrant chronic respiratory tract infections.


Asunto(s)
Terapia de Fagos , Infecciones por Pseudomonas/terapia , Pseudomonas aeruginosa , Infecciones del Sistema Respiratorio/terapia , Animales , Biopelículas , Enfermedad Crónica , Recuento de Colonia Microbiana , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos BALB C , Factores de Tiempo
8.
Eur Respir J ; 49(4)2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28446558

RESUMEN

To characterise Pseudomonas aeruginosa populations during chronic lung infections of non-cystic fibrosis bronchiectasis patients, we used whole-genome sequencing to 1) assess the diversity of P. aeruginosa and the prevalence of multilineage infections; 2) seek evidence for cross-infection or common source acquisition; and 3) characterise P. aeruginosa adaptations.189 isolates, obtained from the sputa of 91 patients attending 16 adult bronchiectasis centres in the UK, were whole-genome sequenced.Bronchiectasis isolates were representative of the wider P. aeruginosa population. Of 24 patients from whom multiple isolates were examined, there were seven examples of multilineage infections, probably arising from multiple infection events. The number of nucleotide variants between genomes of isolates from different patients was in some cases similar to the variations observed between isolates from individual patients, implying the possible occurrence of cross-infection or common source acquisition.Our data indicate that during infections of bronchiectasis patients, P. aeruginosa populations adapt by accumulating loss-of-function mutations, leading to changes in phenotypes including different modes of iron acquisition and variations in biofilm-associated polysaccharides. The within-population diversification suggests that larger scale longitudinal surveillance studies will be required to capture cross-infection or common source acquisition events at an early stage.


Asunto(s)
Bronquiectasia/microbiología , Infección Hospitalaria/microbiología , Infecciones por Pseudomonas/complicaciones , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Biopelículas , Bronquiectasia/fisiopatología , Fibrosis Quística , Humanos , Fenotipo , Pseudomonas aeruginosa/aislamiento & purificación , Esputo/microbiología , Reino Unido , Factores de Virulencia , Secuenciación Completa del Genoma
9.
BMC Microbiol ; 17(1): 3, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-28056789

RESUMEN

BACKGROUND: During chronic lung infections of cystic fibrosis patients Pseudomonas aeruginosa populations undergo extensive evolutionary diversification. However, the selective drivers of this evolutionary process are poorly understood. To test the effects of temperate phages on diversification in P. aeruginosa biofilms we experimentally evolved populations of P. aeruginosa for approximately 240 generations in artificial sputum medium with or without a community of three temperate phages. RESULTS: Analysis of end-point populations using a suite of phenotypic tests revealed extensive phenotypic diversification within populations, but no significant differences between the populations evolved with or without phages. The most common phenotypic variant observed was loss of all three types of motility (swimming, swarming and twitching) and resistance to all three phages. Despite the absence of selective pressure, some members of the population evolved antibiotic resistance. The frequency of antibiotic resistant isolates varied according to population and the antibiotic tested. However, resistance to ceftazidime and tazobactam-piperacillin was observed more frequently than resistance to other antibiotics, and was associated with higher prevelence of isolates exhibiting a hypermutable phenotype and increased beta-lactamase production. CONCLUSIONS: We observed considerable within-population phenotypic diversity in P. aeruginosa populations evolving in the artificial sputum medium biofilm model. Replicate populations evolved both in the presence and absence of phages converged upon similar sets of phenotypes. The evolved phenotypes, including antimicrobial resistance, were similar to those observed amongst clinical isolates from cystic fibrosis infections.


Asunto(s)
Biodiversidad , Evolución Biológica , Fenotipo , Pseudomonas aeruginosa/fisiología , Esputo/microbiología , Bacteriófagos , Biopelículas/crecimiento & desarrollo , Medios de Cultivo/química , Fibrosis Quística/microbiología , Farmacorresistencia Microbiana , Ácido Penicilánico/análogos & derivados , Ácido Penicilánico/farmacología , Piperacilina/farmacología , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/virología , Esputo/química , Tazobactam , beta-Lactamasas/metabolismo
10.
BMC Microbiol ; 17(1): 30, 2017 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-28158967

RESUMEN

BACKGROUND: Pseudomonas aeruginosa typically displays loss of virulence-associated secretions over the course of chronic cystic fibrosis infections. This has led to the suggestion that virulence is a costly attribute in chronic infections. However, previous reports suggest that overproducing (OP) virulent pathotypes can coexist with non-producing mutants in the CF lung for many years. The consequences of such within-patient phenotypic diversity for the success of this pathogen are not fully understood. Here, we provide in-depth quantification of within-host variation in the production of three virulence associated secretions in the Liverpool cystic fibrosis epidemic strain of P. aeruginosa, and investgate the effect of this phenotypic variation on virulence in acute infections of an insect host model. RESULTS: Within-patient variation was present for all three secretions (pyoverdine, pyocyanin and LasA protease). In two out of three patients sampled, OP isolates coexisted with under-producing mutants. In the third patient, all 39 isolates were under-producers of all three secretions relative to the transmissible ancestor LESB58. Finally, this phenotypic variation translated into variation in virulence in an insect host model. CONCLUSIONS: Within population variation in the production of P. aeruginosa virulence-associated secretions can lead to high virulence sub-populations persisting in patients with chronic CF infections.


Asunto(s)
Fibrosis Quística/complicaciones , Pulmón/microbiología , Infecciones por Pseudomonas/etiología , Pseudomonas aeruginosa/patogenicidad , Virulencia , Adulto , Animales , Proteínas Bacterianas/genética , Enfermedad Crónica , Modelos Animales de Enfermedad , Femenino , Humanos , Insectos/microbiología , Metaloproteasas/análisis , Metaloproteasas/metabolismo , Mutación , Oligopéptidos/análisis , Oligopéptidos/metabolismo , Fenotipo , Neumonía Bacteriana/etiología , Piocianina/análisis , Piocianina/metabolismo , Factores de Virulencia/análisis
11.
J Infect Dis ; 213(3): 395-402, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26268854

RESUMEN

The opportunistic pathogen Pseudomonas aeruginosa causes chronic lung infection in patients with cystic fibrosis. The Liverpool Epidemic Strain LESB58 is highly resistant to antibiotics, transmissible, and associated with increased morbidity and mortality. Its genome contains 6 prophages and 5 genomic islands. We constructed a polymerase chain reaction (PCR)-based signature-tagged mutagenesis library of 9216 LESB58 mutants and screened the mutants in a rat model of chronic lung infection. A total of 162 mutants were identified as defective for in vivo maintenance, with 11 signature-tagged mutagenesis mutants having insertions in prophage and genomic island genes. Many of these mutants showed both diminished virulence and reduced phage production. Transcription profiling by quantitative PCR and RNA-Seq suggested that disruption of these prophages had a widespread trans-acting effect on the transcriptome. This study demonstrates that temperate phages play a pivotal role in the establishment of infection through modulation of bacterial host gene expression.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/fisiología , Enfermedades Pulmonares/microbiología , Infecciones por Pseudomonas/microbiología , Fagos Pseudomonas/fisiología , Replicación Viral/fisiología , Animales , Enfermedad Crónica , Genes Bacterianos , Islas Genómicas , Mutación , Profagos/genética , Profagos/metabolismo , Ratas , Transcriptoma
12.
Am J Respir Crit Care Med ; 191(7): 775-85, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25590983

RESUMEN

RATIONALE: Pseudomonas aeruginosa, the predominant cause of chronic airway infections of patients with cystic fibrosis, exhibits extensive phenotypic diversity among isolates within and between sputum samples, but little is known about the underlying genetic diversity. OBJECTIVES: To characterize the population genetic structure of transmissible P. aeruginosa Liverpool Epidemic Strain in chronic infections of nine patients with cystic fibrosis, and infer evolutionary processes associated with adaptation to the cystic fibrosis lung. METHODS: We performed whole-genome sequencing of P. aeruginosa isolates and pooled populations and used comparative analyses of genome sequences including phylogenetic reconstructions and resolution of population structure from genome-wide allele frequencies. MEASUREMENTS AND MAIN RESULTS: Genome sequences were obtained for 360 isolates from nine patients. Phylogenetic reconstruction of the ancestry of 40 individually sequenced isolates from one patient sputum sample revealed the coexistence of two genetically diverged, recombining lineages exchanging potentially adaptive mutations. Analysis of population samples for eight additional patients indicated coexisting lineages in six cases. Reconstruction of the ancestry of individually sequenced isolates from all patients indicated smaller genetic distances between than within patients in most cases. CONCLUSIONS: Our population-level analysis demonstrates that coexistence of distinct lineages of P. aeruginosa Liverpool Epidemic Strain within individuals is common. In several cases, coexisting lineages may have been present in the infecting inoculum or assembled through multiple transmissions. Divergent lineages can share mutations via homologous recombination, potentially aiding adaptation to the airway during chronic infection. The genetic diversity of this transmissible strain within infections, revealed by high-resolution genomics, has implications for patient segregation and therapeutic strategies.


Asunto(s)
Fibrosis Quística/microbiología , Variación Genética , Infecciones por Pseudomonas/genética , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/aislamiento & purificación , Infecciones del Sistema Respiratorio/microbiología , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad Crónica , Fibrosis Quística/genética , Femenino , Genoma Bacteriano , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Filogenia , Infecciones del Sistema Respiratorio/genética
13.
Microbiology (Reading) ; 161(10): 1961-1977, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26253522

RESUMEN

Pseudomonas aeruginosa causes chronic lung infections in people with cystic fibrosis (CF) and acute opportunistic infections in people without CF. Forty-two P. aeruginosa strains from a range of clinical and environmental sources were collated into a single reference strain panel to harmonise research on this diverse opportunistic pathogen. To facilitate further harmonized and comparable research on P. aeruginosa, we characterized the panel strains for growth rates, motility, virulence in the Galleria mellonella infection model, pyocyanin and alginate production, mucoid phenotype, LPS pattern, biofilm formation, urease activity, and antimicrobial and phage susceptibilities. Phenotypic diversity across the P. aeruginosa panel was apparent for all phenotypes examined, agreeing with the marked variability seen in this species. However, except for growth rate, the phenotypic diversity among strains from CF versus non-CF sources was comparable. CF strains were less virulent in the G. mellonella model than non-CF strains (P = 0.037). Transmissible CF strains generally lacked O-antigen, produced less pyocyanin and had low virulence in G. mellonella. Furthermore, in the three sets of sequential CF strains, virulence, O-antigen expression and pyocyanin production were higher in the earlier isolate compared to the isolate obtained later in infection. Overall, this full phenotypic characterization of the defined panel of P. aeruginosa strains increases our understanding of the virulence and pathogenesis of P. aeruginosa and may provide a valuable resource for the testing of novel therapies against this problematic pathogen.


Asunto(s)
Fibrosis Quística/complicaciones , Microbiología Ambiental , Fenotipo , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/patogenicidad , Animales , Modelos Animales de Enfermedad , Humanos , Lepidópteros/microbiología , Dosificación Letal Mediana , Locomoción , Pseudomonas aeruginosa/clasificación , Pseudomonas aeruginosa/aislamiento & purificación , Pseudomonas aeruginosa/fisiología , Análisis de Supervivencia , Virulencia
14.
Gut ; 63(5): 761-70, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-23846483

RESUMEN

OBJECTIVE: Colonic mucosa-associated Escherichia coli are increased in Crohn's disease (CD) and colorectal cancer (CRC). They variously haemagglutinate, invade epithelial cell lines, replicate within macrophages, translocate across M (microfold) cells and damage DNA. We investigated genes responsible for these effects and their co-association in colonic mucosal isolates. DESIGN: A fosmid library yielding 968 clones was prepared in E coli EPI300-T1 using DNA from a haemagglutinating CRC isolate, and resulting haemagglutinating clones were 454-pyrosequenced. PCR screening was performed on 281 colonic E coli isolates from inflammatory bowel disease (IBD) (35 patients), CRC (21) and controls (24; sporadic polyps or irritable bowel syndrome). RESULTS: 454-Pyrosequencing of fosmids from the haemagglutinating clones (n=8) identified the afimbrial adhesin afa-1 operon. Transfection of afa-1 into E coli K-12 predictably conferred diffuse adherence plus invasion of HEp-2 and I-407 epithelial cells, and upregulation of vascular endothelial growth factor. E coli expressing afaC were common in CRC (14/21, p=0.0009) and CD (9/14, p=0.005) but not ulcerative colitis (UC; 8/21) compared with controls (4/24). E coli expressing both afaC and lpfA (relevant to M-cell translocation) were common in CD (8/14, p=0.0019) and CRC (14/21, p=0.0001), but not UC (6/21) compared with controls (2/24). E coli expressing both afaC and pks (genotoxic) were common in CRC (11/21, p=0.0015) and UC (8/21, p=0.022), but not CD (4/14) compared with controls (2/24). All isolates expressed dsbA and htrA relevant to intra-macrophage replication, and 242/281 expressed fimH encoding type-1 fimbrial adhesin. CONCLUSIONS: IBD and CRC commonly have colonic mucosal E coli that express genes that confer properties relevant to pathogenesis including M-cell translocation, angiogenesis and genotoxicity.


Asunto(s)
Colon/microbiología , Neoplasias del Colon/microbiología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Fimbrias/metabolismo , Enfermedades Inflamatorias del Intestino/microbiología , Mucosa Intestinal/microbiología , Adhesinas de Escherichia coli/metabolismo , Secuencia de Bases , Biomarcadores/metabolismo , Células CACO-2 , Estudios de Casos y Controles , Línea Celular , ADN Bacteriano/análisis , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Escherichia coli/patogenicidad , Hemaglutininas/metabolismo , Humanos , Datos de Secuencia Molecular , Sintasas Poliquetidas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN
17.
BMC Microbiol ; 13: 170, 2013 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-23879797

RESUMEN

BACKGROUND: Pseudomonas aeruginosa populations within the cystic fibrosis lung exhibit extensive phenotypic and genetic diversification. The resultant population diversity is thought to be crucial to the persistence of infection and may underpin the progression of disease. However, because cystic fibrosis lungs represent ecologically complex and hostile environments, the selective forces driving this diversification in vivo remain unclear. We took an experimental evolution approach to test the hypothesis that sub-inhibitory antibiotics can drive diversification of P. aeruginosa populations. Replicate populations of P. aeruginosa LESB58 were cultured for seven days in artificial sputum medium with and without sub-inhibitory concentrations of various clinically relevant antibiotics. We then characterised diversification with respect to 13 phenotypic and genotypic characteristics. RESULTS: We observed that higher population diversity evolved in the presence of azithromycin, ceftazidime or colistin relative to antibiotic-free controls. Divergence occurred due to alterations in antimicrobial susceptibility profiles following exposure to azithromycin, ceftazidime and colistin. Alterations in colony morphology and pyocyanin production were observed following exposure to ceftazidime and colistin only. Diversification was not observed in the presence of meropenem. CONCLUSIONS: Our study indicates that certain antibiotics can promote population diversification when present in sub-inhibitory concentrations. Hence, the choice of antibiotic may have previously unforeseen implications for the development of P. aeruginosa infections in the lungs of cystic fibrosis patients.


Asunto(s)
Antibacterianos/farmacología , Variación Genética , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Esputo/microbiología , Genotipo , Humanos , Modelos Teóricos , Fenotipo , Pseudomonas aeruginosa/genética , Piocianina/metabolismo
18.
J Infect Dis ; 206(10): 1589-96, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23002447

RESUMEN

BACKGROUND: Ureters are fundamental for keeping kidneys free from uropathogenic Escherichia coli (UPEC), but we have shown that 2 strains (J96 and 536) can subvert this role and reduce ureteric contractility. To determine whether this is (1) a widespread feature of UPEC, (2) exhibited only by UPEC, and (3) dependent upon type 1 fimbriae, we analyzed strains representing epidemiologically important multilocus sequence types ST131, ST73, and ST95 and non-UPEC E. coli. METHODS: Contractility and calcium transients in intact rat ureters were compared between strains. Mannose and fim mutants were used to investigate the role of type 1 fimbriae. RESULTS: Non-UPEC had no significant effect on contractility, with a mean decrease after 8 hours of 8.8%, compared with 8.8% in controls. UPEC effects on contractility were strain specific, with decreases from 9.47% to 96.7%. Mannose inhibited the effects of the most potent strains (CFT073 and UTI89) but had variable effects among other UPEC strains. Mutation and complementation studies showed that the effects of the UTI89 cystitis isolate were fimH dependent. CONCLUSIONS: We find that (1) non-UPEC do not affect ureteric contractility, (2) impairment of contractility is a common feature of UPEC, and (3) the mechanism varies between strains, but for the most potent UPEC type 1 fimbriae are involved.


Asunto(s)
Uréter/microbiología , Uréter/fisiopatología , Escherichia coli Uropatógena/fisiología , Aglutinación , Animales , Femenino , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Metilmanósidos/farmacología , Contracción Muscular/efectos de los fármacos , Mutación , Ratas , Saccharomyces cerevisiae/metabolismo , Factores de Tiempo , Uréter/efectos de los fármacos , Escherichia coli Uropatógena/clasificación
19.
PLoS One ; 18(5): e0285856, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37192202

RESUMEN

Pseudomonas aeruginosa causes a wide range of severe infections. Ceftazidime, a cephalosporin, is a key antibiotic for treating infections but a significant proportion of isolates are ceftazidime-resistant. The aim of this research was to identify mutations that contribute to resistance, and to quantify the impacts of individual mutations and mutation combinations. Thirty-five mutants with reduced susceptibility to ceftazidime were evolved from two antibiotic-sensitive P. aeruginosa reference strains PAO1 and PA14. Mutations were identified by whole genome sequencing. The evolved mutants tolerated ceftazidime at concentrations between 4 and 1000 times that of the parental bacteria, with most mutants being ceftazidime resistant (minimum inhibitory concentration [MIC] ≥ 32 mg/L). Many mutants were also resistant to meropenem, a carbapenem antibiotic. Twenty-eight genes were mutated in multiple mutants, with dacB and mpl being the most frequently mutated. Mutations in six key genes were engineered into the genome of strain PAO1 individually and in combinations. A dacB mutation by itself increased the ceftazidime MIC by 16-fold although the mutant bacteria remained ceftazidime sensitive (MIC < 32 mg/L). Mutations in ampC, mexR, nalC or nalD increased the MIC by 2- to 4-fold. The MIC of a dacB mutant was increased when combined with a mutation in ampC, rendering the bacteria resistant, whereas other mutation combinations did not increase the MIC above those of single mutants. To determine the clinical relevance of mutations identified through experimental evolution, 173 ceftazidime-resistant and 166 sensitive clinical isolates were analysed for the presence of sequence variants that likely alter function of resistance-associated genes. dacB and ampC sequence variants occur most frequently in both resistant and sensitive clinical isolates. Our findings quantify the individual and combinatorial effects of mutations in different genes on ceftazidime susceptibility and demonstrate that the genetic basis of ceftazidime resistance is complex and multifactorial.


Asunto(s)
Ceftazidima , Infecciones por Pseudomonas , Humanos , Ceftazidima/farmacología , Pseudomonas aeruginosa , Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacología , Antibacterianos/farmacología , Cefalosporinas/farmacología , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Combinación de Medicamentos , Compuestos de Azabiciclo/farmacología
20.
Eur Respir J ; 40(1): 227-38, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22323572

RESUMEN

Pseudomonas aeruginosa chronic lung infections are the major cause of morbidity and mortality associated with cystic fibrosis. For many years, the consensus was that cystic fibrosis patients acquire P. aeruginosa from the environment, and hence harbour their own individual clones. However, in the past 15 yrs the emergence of transmissible strains, in some cases associated with greater morbidity and increased antimicrobial resistance, has changed the way that many clinics treat their patients. Here we provide a summary of reported transmissible strains in the UK, other parts of Europe, Australia and North America. In particular, we discuss the prevalence, epidemiology, unusual genotypic and phenotypic features, and virulence of the most intensively studied transmissible strain, the Liverpool epidemic strain. We also discuss the clinical impact of transmissible strains, in particular the diagnostic and infection control approaches adopted to counter their spread. Genomic analysis carried out so far has provided little evidence that transmissibility is due to shared genetic characteristics between different strains. Previous experiences with transmissible strains should help us to learn lessons for the future. In particular, there is a clear need for strain surveillance if emerging problem strains are to be detected before they are widely transmitted.


Asunto(s)
Fibrosis Quística/microbiología , Neumonía Bacteriana/etiología , Infecciones por Pseudomonas/transmisión , Pseudomonas aeruginosa/genética , Australia/epidemiología , Infección Hospitalaria , Fibrosis Quística/complicaciones , Epidemias , Europa (Continente)/epidemiología , Humanos , América del Norte/epidemiología , Infecciones por Pseudomonas/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA