Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 151(2): 414-26, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-23063129

RESUMEN

Diabetes, obesity, and cancer affect upward of 15% of the world's population. Interestingly, all three diseases juxtapose dysregulated intracellular signaling with altered metabolic state. Exactly which genetic factors define stable metabolic set points in vivo remains poorly understood. Here, we show that hedgehog signaling rewires cellular metabolism. We identify a cilium-dependent Smo-Ca(2+)-Ampk axis that triggers rapid Warburg-like metabolic reprogramming within minutes of activation and is required for proper metabolic selectivity and flexibility. We show that Smo modulators can uncouple the Smo-Ampk axis from canonical signaling and identify cyclopamine as one of a new class of "selective partial agonists," capable of concomitant inhibition of canonical and activation of noncanonical hedgehog signaling. Intriguingly, activation of the Smo-Ampk axis in vivo drives robust insulin-independent glucose uptake in muscle and brown adipose tissue. These data identify multiple noncanonical endpoints that are pivotal for rational design of hedgehog modulators and provide a new therapeutic avenue for obesity and diabetes.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Glucólisis , Proteínas Hedgehog/metabolismo , Células Musculares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Quinasas de la Proteína-Quinasa Activada por el AMP , Adipocitos/metabolismo , Animales , Línea Celular , Células Cultivadas , Cilios/metabolismo , Diabetes Mellitus/metabolismo , Humanos , Ratones , Neoplasias/metabolismo , Obesidad/metabolismo , Proteínas Quinasas/metabolismo , Receptor Smoothened
2.
Neuropathol Appl Neurobiol ; 48(1): e12750, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34312900

RESUMEN

AIMS: We investigated N471D WASH complex subunit strumpellin (Washc5) knock-in and Washc5 knock-out mice as models for hereditary spastic paraplegia type 8 (SPG8). METHODS: We generated heterozygous and homozygous N471D Washc5 knock-in mice and subjected them to a comprehensive clinical, morphological and laboratory parameter screen, and gait analyses. Brain tissue was used for proteomic analysis. Furthermore, we generated heterozygous Washc5 knock-out mice. WASH complex subunit strumpellin expression was determined by qPCR and immunoblotting. RESULTS: Homozygous N471D Washc5 knock-in mice showed mild dilated cardiomyopathy, decreased acoustic startle reactivity, thinner eye lenses, increased alkaline phosphatase and potassium levels and increased white blood cell counts. Gait analyses revealed multiple aberrations indicative of locomotor instability. Similarly, the clinical chemistry, haematology and gait parameters of heterozygous mice also deviated from the values expected for healthy animals, albeit to a lesser extent. Proteomic analysis of brain tissue depicted consistent upregulation of BPTF and downregulation of KLHL11 in heterozygous and homozygous knock-in mice. WASHC5-related protein interaction partners and complexes showed no change in abundancies. Heterozygous Washc5 knock-out mice showing normal WASHC5 levels could not be bred to homozygosity. CONCLUSIONS: While biallelic ablation of Washc5 was prenatally lethal, expression of N471D mutated WASHC5 led to several mild clinical and laboratory parameter abnormalities, but not to a typical SPG8 phenotype. The consistent upregulation of BPTF and downregulation of KLHL11 suggest mechanistic links between the expression of N471D mutated WASHC5 and the roles of both proteins in neurodegeneration and protein quality control, respectively.


Asunto(s)
Proteómica , Paraplejía Espástica Hereditaria , Animales , Encéfalo/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Noqueados , Mutación , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/metabolismo
3.
Biochem Biophys Res Commun ; 503(4): 2770-2777, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30100055

RESUMEN

Heterozygous missense mutations in the human VCP gene cause inclusion body myopathy associated with Paget disease of bone and fronto-temporal dementia (IBMPFD) and amyotrophic lateral sclerosis (ALS). The exact molecular mechanisms by which VCP mutations cause disease manifestation in different tissues are incompletely understood. In the present study, we report the comprehensive analysis of a newly generated R155C VCP knock-in mouse model, which expresses the ortholog of the second most frequently occurring human pathogenic VCP mutation. Heterozygous R155C VCP knock-in mice showed decreased plasma lactate, serum albumin and total protein concentrations, platelet numbers, and liver to body weight ratios, and increased oxygen consumption and CD8+/Ly6C + T-cell fractions, but none of the typical human IBMPFD or ALS pathologies. Breeding of heterozygous mice did not yield in the generation of homozygous R155C VCP knock-in animals. Immunoblotting showed identical total VCP protein levels in human IBMPFD and murine R155C VCP knock-in tissues as compared to wild-type controls. However, while in human IBMPFD skeletal muscle tissue 70% of the total VCP mRNA was derived from the mutant allele, in R155C VCP knock-in mice only 5% and 7% mutant mRNA were detected in skeletal muscle and brain tissue, respectively. The lack of any obvious IBMPFD or ALS pathology could thus be a consequence of the very low expression of mutant VCP. We conclude that the increased and decreased fractions of the R155C mutant VCP mRNA in man and mice, respectively, are due to missense mutation-induced, divergent alterations in the biological half-life of the human and murine mutant mRNAs. Furthermore, our work suggests that therapy approaches lowering the expression of the mutant VCP mRNA below a critical threshold may ameliorate the intrinsic disease pathology.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/genética , Genes Letales , Distrofia Muscular de Cinturas/genética , Mutación , Miositis por Cuerpos de Inclusión/genética , Osteítis Deformante/genética , Proteína que Contiene Valosina/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Antígenos Ly/genética , Antígenos Ly/metabolismo , Encéfalo/metabolismo , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/patología , Modelos Animales de Enfermedad , Femenino , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Heterocigoto , Humanos , Masculino , Ratones , Ratones Transgénicos , Músculo Esquelético/metabolismo , Distrofia Muscular de Cinturas/metabolismo , Distrofia Muscular de Cinturas/patología , Miositis por Cuerpos de Inclusión/metabolismo , Miositis por Cuerpos de Inclusión/patología , Osteítis Deformante/metabolismo , Osteítis Deformante/patología , Transducción de Señal , Especificidad de la Especie , Proteína que Contiene Valosina/metabolismo
4.
Hum Mol Genet ; 24(16): 4530-44, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26019234

RESUMEN

Plectin, a versatile 500-kDa cytolinker protein, is essential for muscle fiber integrity and function. The most common disease caused by mutations in the human plectin gene, epidermolysis bullosa simplex with muscular dystrophy (EBS-MD), is characterized by severe skin blistering and progressive muscular dystrophy. Besides displaying pathological desmin-positive protein aggregates and degenerative changes in the myofibrillar apparatus, skeletal muscle specimens of EBS-MD patients and plectin-deficient mice are characterized by massive mitochondrial alterations. In this study, we demonstrate that structural and functional alterations of mitochondria are a primary aftermath of plectin deficiency in muscle, contributing to myofiber degeneration. We found that in skeletal muscle of conditional plectin knockout mice (MCK-Cre/cKO), mitochondrial content was reduced, and mitochondria were aggregated in sarcoplasmic and subsarcolemmal regions and were no longer associated with Z-disks. Additionally, decreased mitochondrial citrate synthase activity, respiratory function and altered adenosine diphosphate kinetics were characteristic of plectin-deficient muscles. To analyze a mechanistic link between plectin deficiency and mitochondrial alterations, we comparatively assessed mitochondrial morphology and function in whole muscle and teased muscle fibers of wild-type, MCK-Cre/cKO and plectin isoform-specific knockout mice that were lacking just one isoform (either P1b or P1d) while expressing all others. Monitoring morphological alterations of mitochondria, an isoform P1b-specific phenotype affecting the mitochondrial fusion-fission machinery and manifesting with upregulated mitochondrial fusion-associated protein mitofusin-2 could be identified. Our results show that the depletion of distinct plectin isoforms affects mitochondrial network organization and function in different ways.


Asunto(s)
Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Plectina/deficiencia , Animales , Línea Celular , Epidermólisis Ampollosa Simple/genética , Epidermólisis Ampollosa Simple/metabolismo , Epidermólisis Ampollosa Simple/patología , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Humanos , Ratones , Ratones Noqueados , Mitocondrias Musculares/genética , Mitocondrias Musculares/patología , Músculo Esquelético/patología , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/metabolismo , Distrofia Muscular de Cinturas/patología , Isoformas de Proteínas/deficiencia
5.
Angew Chem Int Ed Engl ; 56(28): 8267-8271, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28547791

RESUMEN

Organometallic metal(arene) anticancer agents require ligand exchange for their anticancer activity and this is generally believed to confer low selectivity for potential cellular targets. However, using an integrated proteomics-based target-response profiling approach as a potent hypothesis-generating procedure, we found an unexpected target selectivity of a ruthenium(arene) pyridinecarbothioamide (plecstatin) for plectin, a scaffold protein and cytolinker, which was validated in a plectin knock-out model in vitro. Plectin targeting shows potential as a strategy to inhibit tumor invasiveness as shown in cultured tumor spheroids while oral administration of plecstatin-1 to mice reduces tumor growth more efficiently in the invasive B16 melanoma than in the CT26 colon tumor model.


Asunto(s)
Antineoplásicos/farmacología , Compuestos Organometálicos/farmacología , Plectina/efectos de los fármacos , Compuestos de Rutenio/farmacología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Técnicas de Inactivación de Genes , Ontología de Genes , Humanos , Ratones , Neoplasias Experimentales/patología , Compuestos Organometálicos/química , Plectina/genética , Compuestos de Rutenio/química
6.
J Cell Sci ; 127(Pt 16): 3578-92, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24963132

RESUMEN

Filamin C (FLNc) and Xin actin-binding repeat-containing proteins (XIRPs) are multi-adaptor proteins that are mainly expressed in cardiac and skeletal muscles and which play important roles in the assembly and repair of myofibrils and their attachment to the membrane. We identified the dystrophin-binding protein aciculin (also known as phosphoglucomutase-like protein 5, PGM5) as a new interaction partner of FLNc and Xin. All three proteins colocalized at intercalated discs of cardiac muscle and myotendinous junctions of skeletal muscle, whereas FLNc and aciculin also colocalized in mature Z-discs. Bimolecular fluorescence complementation experiments in developing cultured mammalian skeletal muscle cells demonstrated that Xin and aciculin also interact in FLNc-containing immature myofibrils and areas of myofibrillar remodeling and repair induced by electrical pulse stimulation (EPS). Fluorescence recovery after photobleaching (FRAP) experiments showed that aciculin is a highly dynamic and mobile protein. Aciculin knockdown in myotubes led to failure in myofibril assembly, alignment and membrane attachment, and a massive reduction in myofibril number. A highly similar phenotype was found upon depletion of aciculin in zebrafish embryos. Our results point to a thus far unappreciated, but essential, function of aciculin in myofibril formation, maintenance and remodeling.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Proteínas de Unión al ADN/metabolismo , Filaminas/metabolismo , Miofibrillas/metabolismo , Proteínas Nucleares/metabolismo , Fosfoglucomutasa/metabolismo , Animales , Línea Celular , Células Cultivadas , Proteínas del Citoesqueleto/genética , Proteínas de Unión al ADN/genética , Filaminas/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mioblastos/metabolismo , Miofibrillas/genética , Proteínas Nucleares/genética , Fosfoglucomutasa/genética , Unión Proteica
7.
Acta Neuropathol ; 132(3): 453-73, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27393313

RESUMEN

Secondary mitochondrial dysfunction is a feature in a wide variety of human protein aggregate diseases caused by mutations in different proteins, both in the central nervous system and in striated muscle. The functional relationship between the expression of a mutated protein and mitochondrial dysfunction is largely unknown. In particular, the mechanism how this dysfunction drives the disease process is still elusive. To address this issue for protein aggregate myopathies, we performed a comprehensive, multi-level analysis of mitochondrial pathology in skeletal muscles of human patients with mutations in the intermediate filament protein desmin and in muscles of hetero- and homozygous knock-in mice carrying the R349P desmin mutation. We demonstrate that the expression of mutant desmin causes disruption of the extrasarcomeric desmin cytoskeleton and extensive mitochondrial abnormalities regarding subcellular distribution, number and shape. At the molecular level, we uncovered changes in the abundancy and assembly of the respiratory chain complexes and supercomplexes. In addition, we revealed a marked reduction of mtDNA- and nuclear DNA-encoded mitochondrial proteins in parallel with large-scale deletions in mtDNA and reduced mtDNA copy numbers. Hence, our data demonstrate that the expression of mutant desmin causes multi-level damage of mitochondria already in early stages of desminopathies.


Asunto(s)
Desmina/genética , Filamentos Intermedios/patología , Mitocondrias/metabolismo , Músculo Esquelético/patología , Enfermedades Musculares/genética , Animales , Citoesqueleto/metabolismo , Citoesqueleto/patología , Desmina/metabolismo , Humanos , Filamentos Intermedios/genética , Ratones Transgénicos , Mitocondrias/patología , Enfermedades Musculares/patología , Mutación/genética
8.
Exp Cell Res ; 331(2): 331-7, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25447312

RESUMEN

Plectin is the prototype of an intermediate filament (IF)-based cytolinker protein. It affects cells mechanically by interlinking and anchoring cytoskeletal filaments and acts as scaffolding and docking platform for signaling proteins to control cytoskeleton dynamics. The most common disease caused by mutations in the human plectin gene, epidermolysis bullosa simplex with muscular dystrophy (EBS-MD), is characterized by severe skin blistering and progressive muscular dystrophy. Therefore, we compared the biomechanical properties and the response to mechanical stress of murine plectin-deficient myoblasts and keratinocytes with wild-type cells. Using a cell stretching device, plectin-deficient myoblasts exhibited lower mechanical vulnerability upon external stress compared to wild-type cells, which we attributed to lower cellular pre-stress. Contrary to myoblasts, wild-type and plectin-deficient keratinocytes showed no significant differences. In magnetic tweezer measurements using fibronectin-coated paramagnetic beads, the stiffness of keratinocytes was higher than of myoblasts. Interestingly, cell stiffness, adhesion strength, and cytoskeletal dynamics were strikingly altered in plectin-deficient compared to wild-type myoblasts, whereas smaller differences were observed between plectin-deficient and wild-type keratinocytes, indicating that plectin might be more important for stabilizing cytoskeletal structures in myoblasts than in keratinocytes. Traction forces strongly correlated with the stiffness of plectin-deficient and wild-type myoblasts and keratinocytes. Contrary to that cell motility was comparable in plectin-deficient and wild-type myoblasts, but was significantly increased in plectin-deficient compared to wild-type keratinocytes. Thus, we postulate that the lack of plectin has divergent implications on biomechanical properties depending on the respective cell type.


Asunto(s)
Queratinocitos/fisiología , Mioblastos/fisiología , Plectina/fisiología , Estrés Mecánico , Estrés Fisiológico/genética , Animales , Fenómenos Biomecánicos , Adhesión Celular/genética , Línea Celular , Movimiento Celular , Magnetismo , Ratones , Plectina/genética
9.
Biochem Biophys Res Commun ; 463(4): 1210-7, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26086101

RESUMEN

Protein turnover and quality control by the proteasome is of paramount importance for cell homeostasis. Dysfunction of the proteasome is associated with aging processes and human diseases such as neurodegeneration, cardiomyopathy, and cancer. The regulation, i.e. activation and inhibition of this fundamentally important protein degradation system, is still widely unexplored. We demonstrate here that the evolutionarily highly conserved type II triple-A ATPase VCP and the proteasome inhibitor PSMF1/PI31 interact directly, and antagonistically regulate proteasomal activity. Our data provide novel insights into the regulation of proteasomal activity.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Proteínas de Ciclo Celular/fisiología , Complejo de la Endopetidasa Proteasomal/fisiología , Proteínas/fisiología , Biopolímeros , Humanos , Proteína que Contiene Valosina
10.
Acta Neuropathol ; 129(2): 297-315, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25394388

RESUMEN

Mutations of the human desmin gene on chromosome 2q35 cause autosomal dominant, autosomal recessive and sporadic forms of protein aggregation myopathies and cardiomyopathies. We generated R349P desmin knock-in mice, which harbor the ortholog of the most frequently occurring human desmin missense mutation R350P. These mice develop age-dependent desmin-positive protein aggregation pathology, skeletal muscle weakness, dilated cardiomyopathy, as well as cardiac arrhythmias and conduction defects. For the first time, we report the expression level and subcellular distribution of mutant versus wild-type desmin in our mouse model as well as in skeletal muscle specimens derived from human R350P desminopathies. Furthermore, we demonstrate that the missense-mutant desmin inflicts changes of the subcellular localization and turnover of desmin itself and of direct desmin-binding partners. Our findings unveil a novel principle of pathogenesis, in which not the presence of protein aggregates, but disruption of the extrasarcomeric intermediate filament network leads to increased mechanical vulnerability of muscle fibers. These structural defects elicited at the myofiber level finally impact the entire organ and subsequently cause myopathy and cardiomyopathy.


Asunto(s)
Desmina/genética , Desmina/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Miocardio/patología , Animales , Arritmias Cardíacas/patología , Arritmias Cardíacas/fisiopatología , Cardiomiopatías/patología , Cardiomiopatías/fisiopatología , Cardiomiopatía Dilatada/patología , Cardiomiopatía Dilatada/fisiopatología , Citoesqueleto/metabolismo , Citoesqueleto/patología , Modelos Animales de Enfermedad , Escherichia coli , Técnicas de Sustitución del Gen , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Humanos , Ratones Transgénicos , Debilidad Muscular/patología , Debilidad Muscular/fisiopatología , Distrofias Musculares/patología , Distrofias Musculares/fisiopatología , Mutación Missense , ARN Mensajero/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera
11.
Cell Biol Int ; 39(4): 361-3, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25264173

RESUMEN

Myofibrillar myopathies (MFMs) are a group of sporadic and hereditary skeletal muscle diseases, which lead to severe physical disability and premature death. Most MFMs are caused by mutations in genes encoding desmin, plectin, VCP, filamin C, BAG3, FHL-1, αB-crystallin, DNAJB6, myotilin, and ZASP. Biomechanical studies on primary human myoblasts carrying desmin and plectin mutations showed increased stiffness and reduced mechanical stress tolerance i.e., higher mechanical vulnerability compared to control cells. Higher stiffness of mutant cells may lead to higher intracellular stress at physiologic stretch and shear deformation, which in turn could trigger muscle fiber degeneration.


Asunto(s)
Desmina/genética , Desmina/metabolismo , Humanos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Miopatías Estructurales Congénitas/metabolismo , Miopatías Estructurales Congénitas/fisiopatología , Plectina/genética , Plectina/metabolismo
12.
J Invest Dermatol ; 144(3): 547-562.e9, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37716646

RESUMEN

Plectin, a highly versatile and multifunctional cytolinker, has been implicated in several multisystemic disorders. Most sequence variations in the human plectin gene (PLEC) cause epidermolysis bullosa simplex with muscular dystrophy (EBS-MD), an autosomal recessive skin-blistering disorder associated with progressive muscle weakness. In this study, we performed a comprehensive cell biological analysis of dermal fibroblasts from three different patients with EBS-MD, where PLEC expression analyses revealed preserved mRNA levels in all cases, whereas full-length plectin protein content was significantly reduced or completely absent. Downstream effects of pathogenic PLEC sequence alterations included massive bundling of vimentin intermediate filament networks, including the occurrence of ring-like nuclei-encasing filament bundles, elongated mitochondrial networks, and abnormal nuclear morphologies. We found that essential fibroblast functions such as wound healing, migration, or orientation upon cyclic stretch were significantly impaired in the cells of patients with EBS-MD. Finally, EBS-MD fibroblasts displayed reduced adhesion capacities, which could be attributed to smaller focal adhesion contacts. Our study not only emphasizes plectin's functional role in human skin fibroblasts, it also provides further insights into the understanding of EBS-MD-associated disease mechanisms.


Asunto(s)
Epidermólisis Ampollosa Simple , Distrofia Muscular de Cinturas , Distrofias Musculares , Humanos , Filamentos Intermedios/metabolismo , Plectina/genética , Epidermólisis Ampollosa Simple/patología , Distrofias Musculares/complicaciones , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Mitocondrias/metabolismo , Fibroblastos/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo
13.
Glia ; 61(8): 1274-87, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23836526

RESUMEN

Previous studies have unmasked plectin, a uniquely versatile intermediate filament-associated cytolinker protein, to be essential for skin and skeletal muscle integrity. Different sets of isoforms of the protein were found to stabilize cells mechanically, regulate cytoskeletal dynamics, and serve as a scaffolding platform for signaling molecules. Here, we investigated whether a similar scenario prevails in myelinating Schwann cells. Using isoform-specific antibodies, the two plectin variants predominantly expressed in the cytoplasmic compartment (Cajal bands) of Schwann cells were identified as plectin (P)1 and P1c. Coimmunoprecipitation and immunolocalization experiments revealed complex formation of Cajal band plectin with ß-dystroglycan, the core component of the dystrophin glycoprotein complex that in Schwann cells is crucial for the compartmentalization and stabilization of the myelin sheath. To study the functional implications of Schwann cell-specific plectin-ß-dystroglycan interaction, we generated conditional (Schwann cell-restricted) plectin knockout mice. Ablation of plectin in myelinating Schwann cells (SCs) was found not to affect myelin sheath formation but to abrogate the tight association of the dystroglycan complex with the intermediate filament cytoskeleton. We show that the disruption of this association leads to the destabilization of the dystroglycan complex combined with increased myelin sheath deformations observed in the peripheral nerve during ageing of the animal.


Asunto(s)
Distroglicanos/metabolismo , Vaina de Mielina/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Plectina/fisiología , Células de Schwann/metabolismo , Vimentina/metabolismo , Animales , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Vaina de Mielina/química , Fibras Nerviosas Mielínicas/química , Plectina/metabolismo , Unión Proteica/fisiología , Células de Schwann/química , Nervio Ciático/química , Nervio Ciático/metabolismo
14.
Histochem Cell Biol ; 140(1): 33-53, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23748243

RESUMEN

Plectin is a large, 500-kDa, intermediate filament (IF)-associated protein. It acts as a cytoskeletal crosslinker and signaling scaffold, affecting mechanical as well as dynamic properties of the cytoskeleton. As a member of the plakin family of cytolinker proteins, plectin has a multidomain structure that is responsible for its vast binding portfolio. It not only binds to all types of IFs, actin filaments and microtubules, but also to transmembrane receptors, proteins of the subplasma membrane protein skeleton, components of the nuclear envelope, and several kinases with known roles in migration, proliferation, and energy metabolism of cells. Due to alternative splicing, plectin is expressed as various isoforms with differing N-terminal heads that dictate their differential subcellular targeting. Through specific interactions with other proteins at their target sites and their ability to bind to all types of IFs, plectin molecules provide strategically located IF anchorage sites within the cytoplasm of cells. In this review, we will present an overview of the structural features and functional properties of plectin and discuss recent progress in defining the role of its isoforms in stress-prone tissues and the implicated diseases, with focus on skin, skeletal muscle, and Schwann cells of peripheral nerve.


Asunto(s)
Filamentos Intermedios/metabolismo , Músculo Esquelético/metabolismo , Nervios Periféricos/metabolismo , Plectina/metabolismo , Piel/metabolismo , Variación Genética , Humanos , Plectina/genética , Isoformas de Proteínas/metabolismo , Enfermedades de la Piel/fisiopatología
15.
Acta Neuropathol ; 125(1): 77-93, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22864774

RESUMEN

Plectin, a giant multifunctional cytolinker protein, plays a crucial role in stabilizing and orchestrating intermediate filament networks in cells. Mutations in the human plectin gene result in multiple diseases manifesting with muscular dystrophy, skin blistering, and signs of neuropathy. The most common disease caused by plectin deficiency is epidermolysis bullosa simplex (EBS)-MD, a rare autosomal-recessive skin blistering disorder with late-onset muscular dystrophy. EBS-MD patients and plectin-deficient mice display pathologic desmin-positive protein aggregates, degenerated myofibrils, and mitochondrial abnormalities, the hallmarks of myofibrillar myopathies. In addition to EBS-MD, plectin mutations have been shown to cause EBS-MD with a myasthenic syndrome, limb-girdle muscular dystrophy type 2Q, EBS with pyloric atresia, and EBS-Ogna. This review focuses on clinical and pathological manifestations of these plectinopathies. It addresses especially plectin's role in skeletal muscle, where a loss of muscle fiber integrity and profound changes of myofiber cytoarchitecture are observed in its absence. Furthermore, the highly complex genetic and molecular structure of plectin is discussed; a high number of differentially spliced exons give rise to a variety of different isoforms, which fulfill distinct functions in different cell types and tissues. Plectin's abilities to act as a dynamic organizer of intermediate filament networks and to interact with a multitude of different interaction partners are the basis for its function as a scaffolding platform for proteins involved in signaling. Finally, the article addresses a series of genetically manipulated mouse lines that were generated to serve as powerful models to study functional and molecular consequences of plectin gene defects.


Asunto(s)
Desmina/metabolismo , Epidermólisis Ampollosa Simple/patología , Distrofias Musculares/patología , Plectina/metabolismo , Animales , Desmina/genética , Epidermólisis Ampollosa Simple/genética , Epidermólisis Ampollosa Simple/metabolismo , Predisposición Genética a la Enfermedad , Humanos , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Plectina/genética
16.
Cells ; 12(9)2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37174658

RESUMEN

Plectin, a highly versatile cytolinker protein, is crucial for myofiber integrity and function. Accordingly, mutations in the human gene (PLEC) cause several rare diseases, denoted as plectinopathies, with most of them associated with progressive muscle weakness. Of several plectin isoforms expressed in skeletal muscle and the heart, P1d is the only isoform expressed exclusively in these tissues. Using high-resolution stimulated emission depletion (STED) microscopy, here we show that plectin is located within the gaps between individual α-actinin-positive Z-disks, recruiting and bridging them to desmin intermediate filaments (Ifs). Loss of plectin in myofibril bundles led to a complete loss of desmin Ifs. Loss of Z-disk-associated plectin isoform P1d led to disorganization of muscle fibers and slower relaxation of myofibrils upon mechanical strain, in line with an observed inhomogeneity of muscle ultrastructure. In addition to binding to α-actinin and thereby providing structural support, P1d forms a scaffolding platform for the chaperone-assisted selective autophagy machinery (CASA) by directly interacting with HSC70 and synpo2. In isoform-specific knockout (P1d-KO) mouse muscle and mechanically stretched plectin-deficient myoblasts, we found high levels of undigested filamin C, a bona fide substrate of CASA. Similarly, subjecting P1d-KO mice to forced swim tests led to accumulation of filamin C aggregates in myofibers, highlighting a specific role of P1d in tension-induced proteolysis activated upon high loads of physical exercise and muscle contraction.


Asunto(s)
Actinina , Plectina , Animales , Humanos , Ratones , Desmina/genética , Desmina/metabolismo , Filaminas , Plectina/metabolismo , Isoformas de Proteínas/metabolismo
18.
Life Sci Alliance ; 5(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35790299

RESUMEN

Aberrant expression of dystrophin, utrophin, dysferlin, or calpain-3 was originally identified in muscular dystrophies (MDs). Increasing evidence now indicates that these proteins might act as tumor suppressors in myogenic and non-myogenic cancers. As DNA damage and somatic aneuploidy, hallmarks of cancer, are early pathological signs in MDs, we hypothesized that a common pathway might involve the centrosome. Here, we show that dystrophin, utrophin, dysferlin, and calpain-3 are functional constituents of the centrosome. In myoblasts, lack of any of these proteins caused excess centrosomes, centrosome misorientation, nuclear abnormalities, and impaired microtubule nucleation. In dystrophin double-mutants, these defects were significantly aggravated. Moreover, we demonstrate that also in non-myogenic cells, all four MD-related proteins localize to the centrosome, including the muscle-specific full-length dystrophin isoform. Therefore, MD-related proteins might share a convergent function at the centrosome in addition to their diverse, well-established muscle-specific functions. Thus, our findings support the notion that cancer-like centrosome-related defects underlie MDs and establish a novel concept linking MDs to cancer.


Asunto(s)
Distrofias Musculares , Neoplasias , Calpaína , Centrosoma/metabolismo , Disferlina , Distrofina/genética , Humanos , Proteínas de la Membrana/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Neoplasias/genética , Utrofina
19.
Cells ; 10(9)2021 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-34572129

RESUMEN

Plectin is a giant cytoskeletal crosslinker and intermediate filament stabilizing protein. Mutations in the human plectin gene (PLEC) cause several rare diseases that are grouped under the term plectinopathies. The most common disorder is autosomal recessive disease epidermolysis bullosa simplex with muscular dystrophy (EBS-MD), which is characterized by skin blistering and progressive muscle weakness. Besides EBS-MD, PLEC mutations lead to EBS with nail dystrophy, EBS-MD with a myasthenic syndrome, EBS with pyloric atresia, limb-girdle muscular dystrophy type R17, or EBS-Ogna. In this review, we focus on the clinical and pathological manifestations caused by PLEC mutations on skeletal and cardiac muscle. Skeletal muscle biopsies from EBS-MD patients and plectin-deficient mice revealed severe dystrophic features with variation in fiber size, degenerative myofibrillar changes, mitochondrial alterations, and pathological desmin-positive protein aggregates. Ultrastructurally, PLEC mutations lead to a disorganization of myofibrils and sarcomeres, Z- and I-band alterations, autophagic vacuoles and cytoplasmic bodies, and misplaced and degenerating mitochondria. We also summarize a variety of genetically manipulated mouse and cell models, which are either plectin-deficient or that specifically lack a skeletal muscle-expressed plectin isoform. These models are powerful tools to study functional and molecular consequences of PLEC defects and their downstream effects on the skeletal muscle organization.


Asunto(s)
Epidermólisis Ampollosa Simple/patología , Músculo Esquelético/patología , Distrofias Musculares/patología , Plectina/metabolismo , Animales , Epidermólisis Ampollosa Simple/metabolismo , Humanos , Músculo Esquelético/metabolismo , Distrofias Musculares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA