Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Acta Neuropathol ; 145(1): 29-48, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36357715

RESUMEN

Epitranscriptomic regulation adds a layer of post-transcriptional control to brain function during development and adulthood. The identification of RNA-modifying enzymes has opened the possibility of investigating the role epitranscriptomic changes play in the disease process. NOP2/Sun RNA methyltransferase 2 (NSun2) is one of the few known brain-enriched methyltransferases able to methylate mammalian non-coding RNAs. NSun2 loss of function due to autosomal-recessive mutations has been associated with neurological abnormalities in humans. Here, we show NSun2 is expressed in adult human neurons in the hippocampal formation and prefrontal cortex. Strikingly, we unravel decreased NSun2 protein expression and an increased ratio of pTau/NSun2 in the brains of patients with Alzheimer's disease (AD) as demonstrated by Western blotting and immunostaining, respectively. In a well-established Drosophila melanogaster model of tau-induced toxicity, reduction of NSun2 exacerbated tau toxicity, while overexpression of NSun2 partially abrogated the toxic effects. Conditional ablation of NSun2 in the mouse brain promoted a decrease in the miR-125b m6A levels and tau hyperphosphorylation. Utilizing human induced pluripotent stem cell (iPSC)-derived neuronal cultures, we confirmed NSun2 deficiency results in tau hyperphosphorylation. We also found that neuronal NSun2 levels decrease in response to amyloid-beta oligomers (AßO). Notably, AßO-induced tau phosphorylation and cell toxicity in human neurons could be rescued by overexpression of NSun2. Altogether, these results indicate that neuronal NSun2 deficiency promotes dysregulation of miR-125b and tau phosphorylation in AD and highlights a novel avenue for therapeutic targeting.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , MicroARNs , Ratones , Animales , Humanos , Adulto , Metiltransferasas/genética , Fosforilación/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , MicroARNs/genética , Proteínas tau/metabolismo , Mamíferos/metabolismo
2.
EMBO J ; 33(11): 1256-70, 2014 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-24797474

RESUMEN

The cohesin complex is essential for mitosis and meiosis. The specific meiotic roles of individual cohesin proteins are incompletely understood. We report in vivo functions of the only meiosis-specific STAG component of cohesin, STAG3. Newly generated STAG3-deficient mice of both sexes are sterile with meiotic arrest. In these mice, meiotic chromosome architecture is severely disrupted as no bona fide axial elements (AE) form and homologous chromosomes do not synapse. Axial element protein SYCP3 forms dot-like structures, many partially overlapping with centromeres. Asynapsis marker HORMAD1 is diffusely distributed throughout the chromatin, and SYCP1, which normally marks synapsed axes, is largely absent. Centromeric and telomeric sister chromatid cohesion are impaired. Centromere and telomere clustering occurs in the absence of STAG3, and telomere structure is not severely affected. Other cohesin proteins are present, localize throughout the STAG3-devoid chromatin, and form complexes with cohesin SMC1ß. No other deficiency in a single meiosis-specific cohesin causes a phenotype as drastic as STAG3 deficiency. STAG3 emerges as the key STAG cohesin involved in major functions of meiotic cohesin.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromátides/fisiología , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica/genética , Meiosis/genética , Proteínas Nucleares/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Centrómero/genética , Centrómero/fisiología , Cromátides/genética , Proteínas Cromosómicas no Histona/genética , Cromosomas/genética , Femenino , Masculino , Ratones , Proteínas Nucleares/genética , Oocitos/citología , Oocitos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Organismos Libres de Patógenos Específicos , Espermatocitos/citología , Espermatocitos/metabolismo , Complejo Sinaptonémico/genética , Complejo Sinaptonémico/metabolismo , Telómero/genética , Telómero/fisiología , Testículo/citología , Testículo/metabolismo , Cohesinas
3.
Reprod Fertil Dev ; 30(9): 1267-1275, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29665953

RESUMEN

Cervical mucus modulates fertility by cyclical changes of its biophysical and functional properties. Based on an analogy with bronchial goblet cells we set out to investigate the possible role of the gamma-aminobutyric acid (GABA) signalling pathway in the mediation of oestrogen-induced mucus secretion from endocervical secretory cells. The aim of the study was to examine the existence of GABAA receptor (GABAAR), glutamic acid decarboxylase 65/67 (GAD65/67) and vesicular GABA transporter (VGAT) in human and mouse cervical tissue. The mouse cervical tissue expressed GabaAR mRNA transcripts throughout the oestrous cycle. GABAAR-positive immunolabelling was present in the superficial layer of the mouse cervico-vaginal epithelium in pro-oestrus. Human cervical tissue showed the presence of GABAAR, GAD67 and VGAT mRNA transcripts and clear immunofluorescent signals of all three molecules were detected in the endocervical secretory epithelium. The results of this study confirmed that elements of the GABA signalling pathway are present in the secretory epithelium of mouse and human cervical tissue and that GABA signalling pathway could be considered a possible mediator in oestrogen regulation of mucus secretion in the endocervical glands.


Asunto(s)
Cuello del Útero/metabolismo , Glutamato Descarboxilasa/metabolismo , Receptores de GABA-A/metabolismo , Transducción de Señal/fisiología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Femenino , Fertilidad/fisiología , Humanos , Ratones
4.
Cell Stem Cell ; 31(5): 676-693.e10, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38626772

RESUMEN

Frontotemporal dementia (FTD) is an incurable group of early-onset dementias that can be caused by the deposition of hyperphosphorylated tau in patient brains. However, the mechanisms leading to neurodegeneration remain largely unknown. Here, we combined single-cell analyses of FTD patient brains with a stem cell culture and transplantation model of FTD. We identified disease phenotypes in FTD neurons carrying the MAPT-N279K mutation, which were related to oxidative stress, oxidative phosphorylation, and neuroinflammation with an upregulation of the inflammation-associated protein osteopontin (OPN). Human FTD neurons survived less and elicited an increased microglial response after transplantation into the mouse forebrain, which we further characterized by single nucleus RNA sequencing of microdissected grafts. Notably, downregulation of OPN in engrafted FTD neurons resulted in improved engraftment and reduced microglial infiltration, indicating an immune-modulatory role of OPN in patient neurons, which may represent a potential therapeutic target in FTD.


Asunto(s)
Demencia Frontotemporal , Neuronas , Osteopontina , Proteínas tau , Osteopontina/metabolismo , Osteopontina/genética , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Demencia Frontotemporal/metabolismo , Humanos , Neuronas/metabolismo , Neuronas/patología , Animales , Proteínas tau/metabolismo , Ratones , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Microglía/metabolismo , Microglía/patología , Mutación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA