RESUMEN
AIMS/HYPOTHESIS: Antibodies specific to oxidative post-translational modifications (oxPTM) of insulin (oxPTM-INS) are present in most individuals with type 1 diabetes, even before the clinical onset. However, the antigenic determinants of such response are still unknown. In this study, we investigated the antibody response to oxPTM-INS neoepitope peptides (oxPTM-INSPs) and evaluated their ability to stimulate humoral and T cell responses in type 1 diabetes. We also assessed the concordance between antibody and T cell responses to the oxPTM-INS neoantigenic peptides. METHODS: oxPTM-INS was generated by exposing insulin to various reactive oxidants. The insulin fragments resulting from oxPTM were fractionated by size-exclusion chromatography further to ELISA and LC-MS/MS analysis to identify the oxidised peptide neoepitopes. Immunogenic peptide candidates were produced and then modified in house or designed to incorporate in silico-oxidised amino acids during synthesis. Autoantibodies to the oxPTM-INSPs were tested by ELISA using sera from 63 participants with new-onset type 1 diabetes and 30 control participants. An additional 18 fresh blood samples from participants with recently diagnosed type 1 diabetes, five with established disease, and from 11 control participants were used to evaluate, in parallel, CD4+ and CD8+ T cell activation by oxPTM-INSPs. RESULTS: We observed antibody and T cell responses to three out of six LC-MS/MS-identified insulin peptide candidates: A:12-21 (SLYQLENYCN, native insulin peptide 3 [Nt-INSP-3]), B:11-30 (LVEALYLVCGERGFFYTPKT, Nt-INSP-4) and B:21-30 (ERGFFYTPKT, Nt-INSP-6). For Nt-INSP-4 and Nt-INSP-6, serum antibody binding was stronger in type 1 diabetes compared with healthy control participants (p≤0.02), with oxidised forms of ERGFFYTPKT, oxPTM-INSP-6 conferring the highest antibody binding (83% binders to peptide modified in house by hydroxyl radical [âOH] and >88% to in silico-oxidised peptide; p≤0.001 vs control participants). Nt-INSP-4 induced the strongest T cell stimulation in type 1 diabetes compared with control participants for both CD4+ (p<0.001) and CD8+ (p=0.049). CD4+ response to oxPTM-INSP-6 was also commoner in type 1 diabetes than in control participants (66.7% vs 27.3%; p=0.039). Among individuals with type 1 diabetes, the CD4+ response to oxPTM-INSP-6 was more frequent than to Nt-INSP-6 (66.7% vs 27.8%; p=0.045). Overall, 44.4% of patients showed a concordant autoimmune response to oxPTM-INSP involving simultaneously CD4+ and CD8+ T cells and autoantibodies. CONCLUSIONS/INTERPRETATION: Our findings support the concept that oxidative stress, and neoantigenic epitopes of insulin, may be involved in the immunopathogenesis of type 1 diabetes.
Asunto(s)
Diabetes Mellitus Tipo 1 , Insulina , Humanos , Autoanticuerpos , Linfocitos T CD8-positivos , Cromatografía Liquida , Espectrometría de Masas en TándemRESUMEN
Dietary nitrate (NO3-) supplementation can enhance nitric oxide (NO) bioavailability and lower blood pressure (BP) in humans. The nitrite concentration ([NO2-]) in the plasma is the most commonly used biomarker of increased NO availability. However, it is unknown to what extent changes in other NO congeners, such as S-nitrosothiols (RSNOs), and in other blood components, such as red blood cells (RBC), also contribute to the BP lowering effects of dietary NO3-. We investigated the correlations between changes in NO biomarkers in different blood compartments and changes in BP variables following acute NO3- ingestion. Resting BP was measured and blood samples were collected at baseline, and at 1, 2, 3, 4 and 24 h following acute beetroot juice (â¼12.8 mmol NO3-, â¼11 mg NO3-/kg) ingestion in 20 healthy volunteers. Spearman rank correlation coefficients were determined between the peak individual increases in NO biomarkers (NO3-, NO2-, RSNOs) in plasma, RBC and whole blood, and corresponding decreases in resting BP variables. No significant correlation was observed between increased plasma [NO2-] and reduced BP, but increased RBC [NO2-] was correlated with decreased systolic BP (rs = -0.50, P = 0.03). Notably, increased RBC [RSNOs] was significantly correlated with decreases in systolic (rs = -0.68, P = 0.001), diastolic (rs = -0.59, P = 0.008) and mean arterial pressure (rs = -0.64, P = 0.003). Fisher's z transformation indicated no difference in the strength of the correlations between increases in RBC [NO2-] or [RSNOs] and decreased systolic blood pressure. In conclusion, increased RBC [RSNOs] may be an important mediator of the reduction in resting BP observed following dietary NO3- supplementation.
Asunto(s)
Beta vulgaris , Hipotensión , S-Nitrosotioles , Humanos , Presión Sanguínea , Nitratos , Nitritos , Dióxido de Nitrógeno , Óxido Nítrico/farmacología , Suplementos Dietéticos , Eritrocitos , S-Nitrosotioles/farmacología , Ingestión de Alimentos , Método Doble CiegoRESUMEN
A diet rich in vegetables is known to provide cardioprotection. However, it is unclear how the consumption of different vegetables might interact to influence vascular health. This study tested the hypothesis that nitrate-rich vegetable consumption would lower systolic blood pressure but that this effect would be abolished when nitrate-rich and thiocyanate-rich vegetables are co-ingested. On four separate occasions, and in a randomized cross-over design, eleven healthy males reported to the laboratory and consumed a 750â¯mL vegetable smoothie that was either: low in nitrate (â¼0.3â¯mmol) and thiocyanate (â¼5⯵mol), low in nitrate and high in thiocyanate (â¼72⯵mol), high in nitrate (â¼4â¯mmol) and low in thiocyanate and high in nitrate and thiocyanate. Blood pressure as well as plasma and salivary [thiocyanate], [nitrate] and [nitrite] were assessed before and 3â¯h after smoothie consumption. Plasma [nitrate] and [nitrite] and salivary [nitrate] were not different after consuming the two high-nitrate smoothies, but salivary [nitrite] was higher after consuming the high-nitrate low-thiocyanate smoothie (1183⯱â¯625⯵M) compared to the high-nitrate high-thiocyanate smoothie (941⯱â¯532⯵M; Pâ¯<â¯.001). Systolic blood pressure was only lowered after consuming the high-nitrate low-thiocyanate smoothie (-3⯱â¯5â¯mmHg; Pâ¯<â¯.05). The acute consumption of vegetables high in nitrate and low in thiocyanate lowered systolic blood pressure. However, when the same dose of nitrate-rich vegetables was co-ingested with thiocyanate-rich vegetables the increase in salivary [nitrite] was smaller and systolic blood pressure was not lowered. These findings might have implications for optimising dietary guidelines aimed at improving cardiovascular health.
Asunto(s)
Presión Sanguínea/efectos de los fármacos , Nitratos/farmacología , Tiocianatos/farmacología , Verduras/química , Adulto , Estudios Cruzados , Voluntarios Sanos , Humanos , Masculino , Nitratos/sangre , Nitratos/metabolismo , Tiocianatos/sangre , Tiocianatos/metabolismo , Verduras/metabolismo , Adulto JovenRESUMEN
Uptake of inorganic nitrate (NO3-) into the salivary circulation is a rate-limiting step for dietary NO3- metabolism in mammals. It has been suggested that salivary NO3- uptake occurs in competition with inorganic iodide (I-). Therefore, this study tested the hypothesis that I- supplementation would interfere with NO3- metabolism and blunt blood pressure reductions after dietary NO3- supplementation. Nine healthy adults (4 male, mean ± SD, age 20 ± 1 yr) reported to the laboratory for initial baseline assessment (control) and following six day supplementation periods with 140 mL·day-1 NO3--rich beetroot juice (8.4 mmol NO3-·day-1) and 198 mg potassium gluconate·day-1 (nitrate), and 140 mL·day-1 NO3--rich beetroot juice and 450 µg potassium iodide·day-1 (nitrate + iodide) in a randomized, cross-over experiment. Salivary [I-] was higher in the nitrate + iodide compared to the control and NIT trials (P < 0.05). Salivary and plasma [NO3-] and [NO2-] were higher in the nitrate and nitrate + iodide trials compared to the control trial (P < 0.05). Plasma [NO3-] was higher (474 ± 127 vs. 438 ± 117 µM) and the salivary-plasma [NO3-] ratio was lower (14 ± 6 vs. 20 ± 6 µM), indicative of a lower salivary NO3- uptake, in the nitrate + iodide trial compared to the nitrate trial (P < 0.05). Plasma and salivary [NO2-] were not different between the nitrate and nitrate + iodide trials (P > 0.05). Systolic blood pressure was lower than control (112 ± 13 mmHg) in the nitrate (106 ± 13 mmHg) and nitrate + iodide (106 ± 11 mmHg) trials (P < 0.05), with no differences between the nitrate and nitrate + iodide trials (P > 0.05). In conclusion, co-ingesting NO3- and I- perturbed salivary NO3- uptake, but the increase in salivary and plasma [NO2-] and the lowering of blood pressure were similar compared to NO3- ingestion alone. Therefore, increased dietary I- intake, which is recommended in several countries worldwide as an initiative to offset hypothyroidism, does not appear to compromise the blood pressure reduction afforded by increased dietary NO3- intake.
Asunto(s)
Presión Sanguínea/efectos de los fármacos , Suplementos Dietéticos , Yoduros/metabolismo , Nitratos/metabolismo , Presión Arterial/efectos de los fármacos , Beta vulgaris , Femenino , Jugos de Frutas y Vegetales , Humanos , Yoduros/administración & dosificación , Masculino , Nitratos/administración & dosificación , Nitratos/sangre , Nitritos/sangre , Nitritos/metabolismo , Saliva/metabolismo , Adulto JovenRESUMEN
Nitric oxide alters gastric blood flow, improves vascular function, and mediates glucose uptake within the intestines and skeletal muscle. Dietary nitrate, acting as a source of nitric oxide, appears to be a potential low-cost therapy that may help maintain glucose homeostasis. In a randomized, double-blind, placebo-controlled crossover study, 31 young and older adult participants had a standardized breakfast, supplemented with either nitrate-rich beetroot juice (11.91 mmol nitrate) or nitrate-depleted beetroot juice as placebo (0.01 mmol nitrate). MRI was used to assess apparent diffusion coefficient (ADC), portal vein flux, and velocity. Plasma glucose, incretin, and C-peptide concentrations and blood pressure were assessed. Outcome variables were measured at baseline and hourly for 3 h. Compared with a placebo, beetroot juice resulted in a significant elevation in plasma nitrate and plasma nitrite concentration. No differences were seen for the young or older adult cohorts between placebo and beetroot juice for ADC, or portal vein flux. There was an interaction effect in the young adults between visits for portal vein velocity. Nitrate supplementation did not reduce plasma glucose, active GLP-1, total GLP-1, or plasma C-peptide concentrations for the young or older adult cohorts. Despite a significant elevation in plasma nitrite concentration following an acute dose of (11.91 mmol) nitrate, there was no effect on hepatic blood flow, plasma glucose, C-peptide, or incretin concentration in healthy adults.
Asunto(s)
Glucemia/efectos de los fármacos , Hígado/irrigación sanguínea , Nitratos/administración & dosificación , Nitratos/farmacología , Adulto , Anciano , Velocidad del Flujo Sanguíneo/efectos de los fármacos , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Óxido Nítrico/metabolismo , Vena Porta/efectos de los fármacos , Vena Porta/fisiología , Adulto JovenRESUMEN
Dietary supplementation with inorganic nitrate (NO3-) has been reported to improve cardiovascular health indices in healthy adults. Cigarette smoking increases circulating thiocyanate (SCN-), which has been suggested to competitively inhibit salivary nitrate (NO3-) uptake, a rate-limiting step in dietary NO3- metabolism. Therefore, this study tested the hypothesis that dietary NO3- supplementation would be less effective at increasing the circulating plasma nitrite concentration ([NO2-]) and lowering blood pressure in smokers (S) compared to non-smokers (NS). Nine healthy smokers and eight healthy non-smoking controls reported to the laboratory at baseline (CON) and following six day supplementation periods with 140 mL day-1 NO3--rich (8.4 mmol NO3- day-1; NIT) and NO3--depleted (0.08 mmol NO3- day-1; PLA) beetroot juice in a cross-over experiment. Plasma and salivary [SCN-] were elevated in smokers compared to non-smokers in all experimental conditions (P < 0.05). Plasma and salivary [NO3-] and [NO2-] were elevated in the NIT condition compared to CON and PLA conditions in smokers and non-smokers (P < 0.05). However, the change in salivary [NO3-] (S: 3.5 ± 2.1 vs. NS: 7.5 ± 4.4 mM), plasma [NO3-] (S: 484 ± 198 vs. NS: 802 ± 199 µM) and plasma [NO2-] (S: 218 ± 128 vs. NS: 559 ± 419 nM) between the CON and NIT conditions was lower in the smokers compared to the non-smokers (P < 0.05). Salivary [NO2-] increased above CON to a similar extent with NIT in smokers and non-smokers (P > 0.05). Systolic blood pressure was lowered compared to PLA with NIT in non-smokers (P < 0.05), but not smokers (P > 0.05). These findings suggest that dietary NO3- metabolism is compromised in smokers leading to an attenuated blood pressure reduction compared to non-smokers after NO3- supplementation. These observations may provide novel insights into the cardiovascular risks associated with cigarette smoking and suggest that this population may be less likely to benefit from improved cardiovascular health if they increase dietary NO3- intake.
Asunto(s)
Presión Sanguínea/efectos de los fármacos , Nitratos/uso terapéutico , Fumar/metabolismo , Tiocianatos/análisis , Adolescente , Adulto , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Nitratos/administración & dosificación , Nitratos/farmacología , Saliva/química , Saliva/efectos de los fármacos , Adulto JovenRESUMEN
This study tested the hypothesis that watermelon juice supplementation would improve nitric oxide bioavailability and exercise performance. Eight healthy recreationally-active adult males reported to the laboratory on two occasions for initial testing without dietary supplementation (control condition). Thereafter, participants were randomly assigned, in a cross-over experimental design, to receive 16 days of supplementation with 300 mL·day(-1) of a watermelon juice concentrate, which provided â¼3.4 g l-citrulline·day(-1) and an apple juice concentrate as a placebo. Participants reported to the laboratory on days 14 and 16 of supplementation to assess the effects of the interventions on blood pressure, plasma [l-citrulline], plasma [l-arginine], plasma [nitrite], muscle oxygenation and time-to-exhaustion during severe-intensity exercise. Compared to control and placebo, plasma [l-citrulline] (29 ± 4, 22 ± 6 and 101 ± 23 µM), [l-arginine] (74 ± 9, 67 ± 13 and 116 ± 9 µM) and [nitrite] (102 ± 29, 106 ± 21 and 201 ± 106 nM) were higher after watermelon juice supplementation (P < 0.01). However, systolic blood pressure was higher in the watermelon juice (130 ± 11) and placebo (131 ± 9) conditions compared to the control condition (124 ± 8 mmHg; P < 0.05). The skeletal muscle oxygenation index during moderate-intensity exercise was greater in the watermelon juice condition than the placebo and control conditions (P < 0.05), but time-to-exhaustion during the severe-intensity exercise test (control: 478 ± 80, placebo: 539 ± 108, watermelon juice: 550 ± 143 s) was not significantly different between conditions (P < 0.05). In conclusion, while watermelon juice supplementation increased baseline plasma [nitrite] and improved muscle oxygenation during moderate-intensity exercise, it increased resting blood pressure and did not improve time-to-exhaustion during severe-intensity exercise. These findings do not support the use of watermelon juice supplementation as a nutritional intervention to lower blood pressure or improve endurance exercise performance in healthy adults.
Asunto(s)
Citrullus , Suplementos Dietéticos , Jugos de Frutas y Vegetales , Óxido Nítrico/análisis , Resistencia Física , Arginina/sangre , Presión Arterial , Glucemia/análisis , Citrulina/sangre , Frecuencia Cardíaca , Humanos , Ácido Láctico/sangre , Masculino , Malus , Nitritos/sangre , Consumo de Oxígeno , Intercambio Gaseoso Pulmonar , Adulto JovenRESUMEN
It is now recognised that administration of oral nitrate (NO3(-)), in its various forms, increases the level of nitric oxide (NO) metabolites in the circulation of humans. Its application to modulate physiology and alleviate cardiovascular dysfunction in some patients is now recorded and shows particular promise in hypertension, in modifying platelet activation/aggregation, and in conditions where tissue ischaemia prevails. The potential of oral NO3(-) to modify exercise/performance via elevation of plasma nitrite concentration ([NO2(-)]) has been applied across a range of human test systems. Herein we discuss how the choice of NO3(-) source, route of administration and resulting pharmacokinetics might influence the outcome of physiological measures and potentially contribute to discrepancies in performance trials. There are but a few examples of detailed pharmacokinetic data on which the majority of researchers base their test protocols in different cohorts/settings. We compare and contrast the results of key publications with the aim of highlighting a consensus of our current understanding and critical considerations for those entering the field.
Asunto(s)
Ejercicio Físico/fisiología , Nitratos/farmacocinética , Verduras/química , Administración Oral , Humanos , Nitratos/administración & dosificación , Nitratos/sangre , Aptitud Física , Proyectos de InvestigaciónRESUMEN
BACKGROUND: Chronic obstructive pulmonary disease (COPD) results in exercise intolerance. Dietary nitrate supplementation has been shown to lower blood pressure (BP), reduce the oxygen cost of exercise, and enhance exercise tolerance in healthy volunteers. This study assessed the effects of dietary nitrate on the oxygen cost of cycling, walking performance and BP in individuals with mild-moderate COPD. METHODS: Thirteen patients with mild-moderate COPD were recruited. Participants consumed 70 ml of either nitrate-rich (6.77 mmol nitrate; beetroot juice) or nitrate-depleted beetroot juice (0.002 mmol nitrate; placebo) twice a day for 2.5 days, with the final supplement ~3 hours before testing. BP was measured before completing two bouts of moderate-intensity cycling, where pulmonary gas exchange was measured throughout. The six-minute walk test (6 MWT) was completed 30 minutes subsequent to the second cycling bout. RESULTS: Plasma nitrate concentration was significantly elevated following beetroot juice vs. placebo (placebo; 48 ± 86 vs. beetroot juice; 215 ± 84 µM, P = 0.002). No significant differences were observed between placebo vs. beetroot juice for oxygen cost of exercise (933 ± 323 vs. 939 ± 302 ml: min(-1); P = 0.88), distance covered in the 6 MWT (456 ± 86 vs. 449 ± 79 m; P = 0.37), systolic BP (123 ± 14 vs. 123 ± 14 mmHg; P = 0.91), or diastolic BP (77 ± 9 vs. 79 ± 9 mmHg; P = 0.27). CONCLUSION: Despite a large rise in plasma nitrate concentration, two days of nitrate supplementation did not reduce the oxygen cost of moderate intensity cycling, increase distance covered in the 6 MWT, or lower BP.
Asunto(s)
Presión Sanguínea/efectos de los fármacos , Ejercicio Físico/fisiología , Nitratos/farmacología , Enfermedad Pulmonar Obstructiva Crónica/dietoterapia , Adulto , Anciano , Beta vulgaris , Suplementos Dietéticos , Método Doble Ciego , Humanos , Persona de Mediana Edad , Nitratos/sangre , Oxígeno/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Intercambio Gaseoso Pulmonar , CaminataRESUMEN
Thiols and disulfides are ubiquitous and important analytical targets. However, their redox properties, in particular on gold sensor electrodes, are complex and obscured by strong adsorption. Here, a gold-gold dual-plate microtrench dual-electrode sensor with feedback signal amplification is demonstrated to give well-defined (but kinetically limited) steady-state voltammetric current responses for the cysteine-cystine redox cycle in nondegassed aqueous buffer media at pH 7 down to micromolar concentration levels.
Asunto(s)
Cisteína/análisis , Cisteína/química , Cistina/análisis , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Cistina/química , Electrodos , Diseño de Equipo , Oro , Oxidación-ReducciónRESUMEN
We investigated the effects of dietary nitrate (NO3 (-)) supplementation on the concentration of plasma nitrite ([NO2 (-)]), oxygen uptake (VÌo2) kinetics, and exercise tolerance in normoxia (N) and hypoxia (H). In a double-blind, crossover study, 12 healthy subjects completed cycle exercise tests, twice in N (20.9% O2) and twice in H (13.1% O2). Subjects ingested either 140 ml/day of NO3 (-)-rich beetroot juice (8.4 mmol NO3; BR) or NO3 (-)-depleted beetroot juice (PL) for 3 days prior to moderate-intensity and severe-intensity exercise tests in H and N. Preexercise plasma [NO2 (-)] was significantly elevated in H-BR and N-BR compared with H-PL (P < 0.01) and N-PL (P < 0.01). The rate of decline in plasma [NO2 (-)] was greater during severe-intensity exercise in H-BR [-30 ± 22 nM/min, 95% confidence interval (CI); -44, -16] compared with H-PL (-7 ± 10 nM/min, 95% CI; -13, -1; P < 0.01) and in N-BR (-26 ± 19 nM/min, 95% CI; -38, -14) compared with N-PL (-1 ± 6 nM/min, 95% CI; -5, 2; P < 0.01). During moderate-intensity exercise, steady-state pulmonary VÌo2 was lower in H-BR (1.91 ± 0.28 l/min, 95% CI; 1.77, 2.13) compared with H-PL (2.05 ± 0.25 l/min, 95% CI; 1.93, 2.26; P = 0.02), and VÌo2 kinetics was faster in H-BR (τ: 24 ± 13 s, 95% CI; 15, 32) compared with H-PL (31 ± 11 s, 95% CI; 23, 38; P = 0.04). NO3 (-) supplementation had no significant effect on VÌo2 kinetics during severe-intensity exercise in hypoxia, or during moderate-intensity or severe-intensity exercise in normoxia. Tolerance to severe-intensity exercise was improved by NO3 (-) in hypoxia (H-PL: 197 ± 28; 95% CI; 173, 220 vs. H-BR: 214 ± 43 s, 95% CI; 177, 249; P = 0.04) but not normoxia. The metabolism of NO2 (-) during exercise is altered by NO3 (-) supplementation, exercise, and to a lesser extent, hypoxia. In hypoxia, NO3 (-) supplementation enhances VÌo2 kinetics during moderate-intensity exercise and improves severe-intensity exercise tolerance. These findings may have important implications for individuals exercising at altitude.
Asunto(s)
Ejercicio Físico/fisiología , Nitratos/farmacología , Nitritos/sangre , Oxígeno/metabolismo , Adolescente , Adulto , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Suplementos Dietéticos , Método Doble Ciego , Tolerancia al Ejercicio/fisiología , Humanos , Masculino , Músculo Esquelético/efectos de los fármacos , Consumo de Oxígeno/fisiología , Adulto JovenRESUMEN
Together with carbon monoxide (CO), nitric oxide (NO) and hydrogen sulfide (H2S) form a group of physiologically important gaseous transmitters, sometimes referred to as the "gaseous triumvirate". The three molecules share a wide range of physical and physiological properties: they are small gaseous molecules, able to freely penetrate cellular membranes; they are all produced endogenously in the body and they seem to exert similar biological functions. In the cardiovascular system, for example, they are all vasodilators, promote angiogenesis and protect tissues against damage (e.g. ischemia-reperfusion injury). In addition, they have complex roles in inflammation, with both pro- and anti-inflammatory effects reported. Researchers have focused their efforts in understanding and describing the roles of each of these molecules in different physiological systems, and in the past years attention has also been given to the gases interaction or "cross-talk". This review will focus on the role of NO and H2S in inflammation and will give an overview of the evidence collected so far suggesting the importance of their cross-talk in inflammatory processes.
Asunto(s)
Sulfuro de Hidrógeno , Inflamación/metabolismo , Óxido Nítrico , Animales , Humanos , Ratones , RatasRESUMEN
BACKGROUND: In this substudy of the effect of dietary nitrate on blood pressure, endothelial function, and insulin sensitivity in type 2 diabetes, we report the development of a novel nitrate depleted beetroot juice for use clinical trials and determine if dietary nitrate supplementation improved cognitive function in patients with type 2 diabetes mellitus. METHODS: Beetroot juice was treated with the anion exchange resin Purolite A520e. UV-vis-spectrophotometry, and a blind taste test were performed along with determination of sugar content, measurement of ascorbate and dehydroascorbate, the ionic composition of juice and Proton NMR. Subsequently, 27 patients, age 67.2±4.9 years, (18 male) were recruited for a double blind, randomised, placebo-controlled crossover trial. Participants were randomised to begin in either order beetroot juice (nitrate content 7.5 mmol per 250 ml) or placebo (nitrate depleted beetroot juice nitrate content 0.002 mmol per 250 ml). At the end of each 2 week supplementation period cognitive function was assessed using E-prime, E-Studio software with 5 separate tests being performed. The tests utilised in the present study have been adapted from the Cambridge Neuropsychological Test Automated Battery (CANTAB). RESULTS: The differences in the UV-vis spectra were comparable to the natural variation found in differing cultivars. There were no discernable differences in taste, sugar content, or Proton NMR. Ascorbate and dehydroascorbate were undetectable in either juice. After 2 weeks of beetroot juice simple reaction time was significantly quicker in the active arm at 327±40 ms versus 341.8±52.7 ms in the placebo arm, mean difference 13.9±25.6 ms (95% CI 3.8-24.0 ms), p=0.009. No other measures of cognitive function differed between treatment arms. CONCLUSION: We have developed an effective placebo beetroot juice for use in trials of supplementation of dietary nitrate. Two weeks supplementation of the diet with 7.5 mmol of nitrate per day caused a significant improvement in simple reaction time in individuals with T2DM.
Asunto(s)
Beta vulgaris/química , Bebidas , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Suplementos Dietéticos , Nitratos/administración & dosificación , Nitratos/uso terapéutico , Tiempo de Reacción/efectos de los fármacos , Anciano , Estudios Cruzados , Método Doble Ciego , Femenino , Humanos , Masculino , Nitratos/farmacología , PlacebosRESUMEN
OBJECTIVE: Type II collagen (CII) posttranslationally modified by reactive oxygen species (ROS-CII) that are present in the inflamed joint is an autoantigen in rheumatoid arthritis (RA). The aim of this study was to investigate the potential use of anti-ROS-CII autoantibodies as a biomarker of RA. METHODS: CII was exposed to oxidants that are present in the rheumatoid joint. Autoreactivity to ROS-CII was assessed by enzyme-linked immunosorbent assays in synovial fluid (SF) and serum samples obtained from patients during various phases of RA. This group included disease-modifying antirheumatic drug (DMARD)-naive patients with early RA (n = 85 serum samples) and patients with established RA (n = 80 serum and 50 SF samples), who were categorized as either DMARD responders or DMARD nonresponders. Control subjects included anti-citrullinated protein antibody (ACPA)-positive patients with arthralgia (n = 58 serum samples), patients with osteoarthritis (OA; n = 49 serum and 52 SF samples), and healthy individuals (n = 51 serum samples). RESULTS: Reactivity to ROS-CII among DMARD-naive patients with early RA was significantly higher than that among patients with ACPA-positive arthralgia, patients with OA, and healthy control subjects (P < 0.0001), with 92.9% of serum samples from the patients with early RA binding to anti-ROS-II. There was no significant difference in anti-ROS-CII reactivity between ACPA-positive and ACPA-negative patients with RA, with 93.8% and 91.6% of serum samples, respectively, binding to ROS-CII. The sensitivity and specificity of binding to ROS-CII in patients with early RA were 92% and 98%, respectively. Among patients with established RA, serum reactivity in DMARD nonresponders was significantly higher than that in DMARD responders (P < 0.01); 58.3% of serum samples from nonresponders and 7.6% of serum samples from responders bound to HOCl-ROS, while the respective values for SF were 70% and 60%. In patients with longstanding RA, autoreactivity to ROS-CII changed longitudinally. CONCLUSION: Autoantibodies to ROS-CII have the potential to become diagnostic biomarkers of RA.
Asunto(s)
Artritis Reumatoide/diagnóstico , Autoanticuerpos/inmunología , Colágeno Tipo II/inmunología , Fosfoproteínas/inmunología , Líquido Sinovial/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Antirreumáticos/inmunología , Antirreumáticos/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/inmunología , Biomarcadores , Estudios de Casos y Controles , Colágeno Tipo II/metabolismo , Progresión de la Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Persona de Mediana Edad , Osteoartritis/inmunología , Péptidos Cíclicos/inmunología , Procesamiento Proteico-Postraduccional/inmunología , Índice de Severidad de la Enfermedad , Adulto JovenRESUMEN
Autoantibodies have been associated with human pathologies for a long time, particularly with autoimmune diseases (AIDs). Rheumatoid factor (RF) is known since the late 1930s to be associated with rheumatoid arthritis (RA). The discovery of anticitrullinated protein antibodies in the last century has changed this and other posttranslational modifications (PTM) relevant to RA have since been described. Such PTM introduce neoepitopes in proteins that can generate novel autoantibody specificities. The recent recognition of these novel specificities in RA provides a unique opportunity to understand human B-cell development in vivo. In this paper, we will review the three of the main classes of PTMs already associated with RA: citrullination, carbamylation, and oxidation. With the advancement of research methodologies it should be expected that other autoantibodies against PTM proteins could be discovered in patients with autoimmune diseases. Many of such autoantibodies may provide significant biomarker potential.
Asunto(s)
Artritis Reumatoide/inmunología , Autoanticuerpos/inmunología , Procesamiento Proteico-Postraduccional , Animales , Antígenos/química , Antioxidantes/química , Artritis Reumatoide/metabolismo , Linfocitos B/citología , Biomarcadores/metabolismo , Citrulina/química , Humanos , Inflamación/metabolismo , Oxígeno/química , Especies Reactivas de Oxígeno/metabolismoRESUMEN
The addition of hydrogen peroxide (H2O2) to cultured cells is widely used as a method to modulate redox-regulated cellular pathways, including the induction of programmed cell death in cell culture experiments and the testing of pro- and antioxidant compounds. Here, we assessed the effect on the cellular response to H2O2 of pre-adapting squamous cell carcinoma cells (A431) to the standard cell culture oxygenation of 18.6% O2, compared to cells pre-adapted to a physiological skin O2 concentration (3.0% O2). We showed that cells pre-adapted to 18.6% O2 resisted H2O2-induced cell death compared to cells pre-adapted to 3.0% O2 for 96 h prior to treatment with H2O2. Moreover, the enzymatic activities of catalase and glutathione reductase, as well as the protein expression levels of catalase, were higher in cells pre-adapted to 18.6% O2 compared to cells pre-adapted to 3.0% O2. H2O2-resistant cells, pre-adapted to 18.6% O2, exhibited increased nuclear Nrf-2 levels. It is concluded that A431 cells pre-adapted to standard cell culture oxygenation conditions resist H2O2-induced cell death. This effect may be related to their heightened activation of Nrf-2.
RESUMEN
Background: Incontinence Associated Dermatitis (IAD) is a type of skin inflammation caused by chronic exposure to urine and/or faeces. Current treatment strategies involve creating a barrier between the skin and urine/faeces rather than targeting specific irritants. Urease expressing pathogens catalyse the conversion of urea, present in urine, into ammonia. The accumulation of ammonia causes an elevation in skin pH which is believed to activate faecal enzymes which damage skin, and opportunistic pathogens, which lead to secondary infections. Objectives: To develop a better, multi-factorial model of IAD pathogenesis, including the effect of urease-expressing bacteria on skin, mechanism of damage of urease and urease-triggered activity of faecal enzymes and secondary pathogens. To study the effect of urease inhibition on preventing IAD skin damage. Methods: Five separate studies were made using ex vivo porcine skin and in vivo human skin models. Measurements of the change in skin barrier function were made using skin impedance, trans-epidermal water loss (TEWL), stratum corneum moisture and pH. Skin was exposed to artificial urine, inoculated with various microbes, enzymes and chemicals to examine the influence of: 1) urease-positive Proteus mirabilis 2) ammonia, 3) combination of P. mirabilis and a faecal enzyme, trypsin, 4) combination of P. mirabilis and opportunistic pathogens, Candida albicans and Staphylococcus aureus, 5) inhibition of urease using acetohydroxamic acid (AHA) on barrier function. Results: The urease-mediated production of ammonia had two principal effects: it elevated skin pH and caused inflammation, leading to significant breakdown in skin (stratum corneum) barrier function. Urease was found to further increase the activity of faecal enzymes and opportunistic pathogens, due to elevated skin pH. The urease inhibitor, AHA, was shown to have significantly reduced damage to skin barrier function, measured as its electrical resistance. Conclusions: Targeted therapeutic strategies should be developed to prevent the manifestation of IAD, rather than creating a generic barrier between skin and urine/faeces. Urease has been identified as a crucial component in the manifestation of IAD, due to its role in the production of ammonia. Urease inhibition provides a promising therapeutic target to halt the progression of IAD.
RESUMEN
A central paradigm of cardiovascular homeostasis is that impaired nitric oxide (NO) bioavailability results in a wide array of cardiovascular dysfunction including incompetent endothelium-dependent vasodilatation, thrombosis, vascular inflammation, and proliferation of the intima. Over the course of more than a century, NO donating formulations such as organic nitrates and nitrites have remained a cornerstone of treatment for patients with cardiovascular diseases. These donors primarily produce NO in the circulation and are not targeted to specific (sub)cellular sites of action. However, safe, and therapeutic levels of NO require delivery of the right amount to a precise location at the right time. To achieve these aims, several recent strategies aimed at therapeutically generating or releasing NO in living systems have shown that polymeric and inorganic (silica, gold) nanoparticles and nanoscale metal-organic frameworks could either generate NO endogenously by the catalytic decomposition of endogenous NO substrates or can store and release therapeutically relevant amounts of NO gas. NO-releasing nanomaterials have been developed for vascular implants (such as stents and grafts) to target atherosclerosis, hypertension, myocardial ischemia-reperfusion injury, and cardiac tissue engineering. In this review, we discuss the advances in design and development of novel NO-releasing nanomaterials for cardiovascular therapeutics and critically examine the therapeutic potential of these nanoplatforms to modulate cellular metabolism, to regulate vascular tone, inhibit platelet aggregation, and limit proliferation of vascular smooth muscle with minimal toxic effects.
RESUMEN
Phenethyl isothiocyanate (PEITC) is a secondary metabolic product yielded upon the hydrolysis of gluconasturtiin and it is highly accumulated in the flowers of watercress. The aim of the current study was to assess the role of a naturally derived PEITC-enriched extract in the induction of oxidative stress and to evaluate its anti-melanoma potency through the regulation of its metabolism with the concurrent production of the N-acetyl cysteine conjugated by-product. For this purpose, an in vitro melanoma model was utilized consisting of human primary (A375) cells as well as metastatic (COLO-679) malignant melanoma cells together with non-tumorigenic immortalized keratinocytes (HaCaT). Cytotoxicity was assessed via the Alamar Blue assay whereas the antioxidant/prooxidant activity of PEITC was determined via spectrophotometric assays. Finally, kinetic characterization of the end-product of PEITC metabolism was monitored via UPLC coupled to a tandem mass spectrometry (MS/MS). Our results indicate that although PhEF showed very minor antioxidant activity in a cell-free system, in a cell-based system, it can modulate the activity of key enzyme(s) involved in cellular antioxidant defense mechanism(s). In addition, we have shown that PhEF induces lipid and protein oxidation in a concentration-dependent manner, while its cytotoxicity is not only dependent on PEITC itself but also on its N-acetylated cysteine conjugated form.
RESUMEN
Nitric oxide (NO) is a key signalling molecule released by vascular endothelial cells that is essential for vascular health. Low NO bioactivity is associated with cardiovascular diseases, such as hypertension, atherosclerosis, and heart failure and NO donors are a mainstay of drug treatment. However, many NO donors are associated with the development of tolerance and adverse effects, so new formulations for controlled and targeted release of NO would be advantageous. Herein, we describe the design and characterisation of a novel NO delivery system via the reaction of acidified sodium nitrite with thiol groups that had been introduced by cysteamine conjugation to porous graphene oxide nanosheets, thereby generating S-nitrosated nanosheets. An NO electrode, ozone-based chemiluminescence and electron paramagnetic resonance spectroscopy were used to measure NO released from various graphene formulations, which was sustained at >5 × 10-10 mol cm-2 min-1 for at least 3 h, compared with healthy endothelium (cf. 0.5-4 × 10-10 mol cm-2 min-1). Single cell Raman micro-spectroscopy showed that vascular endothelial and smooth muscle cells (SMCs) took up graphene nanostructures, with intracellular NO release detected via a fluorescent NO-specific probe. Functionalised graphene had a dose-dependent effect to promote proliferation in endothelial cells and to inhibit growth in SMCs, which was associated with cGMP release indicating intracellular activation of canonical NO signalling. Chemiluminescence detected negligible production of toxic N-nitrosamines. Our findings demonstrate the utility of porous graphene oxide as a NO delivery vehicle to release physiologically relevant amounts of NO in vitro, thereby highlighting the potential of these formulations as a strategy for the treatment of cardiovascular diseases.