Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38712060

RESUMEN

Inflammation has enduring impacts on organismal immunity. However, the precise mechanisms by which tissue-restricted inflammation conditions systemic responses are poorly understood. Here, we leveraged a highly compartmentalized model of skin inflammation and identified a surprising type I interferon (IFN)- mediated activation of hematopoietic stem/progenitor cells (HSPCs) that results in profound changes to systemic host responses. Post-inflamed mice were protected from atherosclerosis and had worse outcomes following influenza virus infection. This IFN-mediated HSPC modulation was dependent on IFNAR signaling and could be recapitulated with the administration of recombinant IFNα. Importantly, the transfer of post-inflamed HSPCs was sufficient to transmit the immune suppression phenotype. IFN modulation of HSPCs was rooted both in long-term changes in chromatin accessibility and the emergence of an IFN- responsive functional state from multiple progenitor populations. Collectively, our data reveal the profound and enduring effect of transient inflammation and more specifically type I IFN signaling and set the stage for a more nuanced understanding of HSPC functional modulation by peripheral immune signals.

2.
Front Cell Dev Biol ; 11: 1147434, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36994095

RESUMEN

Macrophages are one of the most functionally diverse immune cells, indispensable to maintain tissue integrity and metabolic health. Macrophages perform a myriad of functions ranging from promoting inflammation, through inflammation resolution to restoring and maintaining tissue homeostasis. Metabolic diseases encompass a growing list of diseases which develop from a mix of genetics and environmental cues leading to metabolic dysregulation and subsequent inflammation. In this review, we summarize the contributions of macrophages to four metabolic conditions-insulin resistance and adipose tissue inflammation, atherosclerosis, non-alcoholic fatty liver disease and neurodegeneration. The role of macrophages is complex, yet they hold great promise as potential therapies to address these growing health concerns.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA