Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Osteoarthritis Cartilage ; 31(2): 238-248, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36336198

RESUMEN

OBJECTIVE: To investigate the test-retest precision and to report the longitudinal change in cartilage thickness, the percentage of knees with progression and the predictive value of the machine-learning-estimated structural progression score (s-score) for cartilage thickness loss in the IMI-APPROACH cohort - an exploratory, 5-center, 2-year prospective follow-up cohort. DESIGN: Quantitative cartilage morphology at baseline and at least one follow-up visit was available for 270 of the 297 IMI-APPROACH participants (78% females, age: 66.4 ± 7.1 years, body mass index (BMI): 28.1 ± 5.3 kg/m2, 55% with radiographic knee osteoarthritis (OA)) from 1.5T or 3T MRI. Test-retest precision (root mean square coefficient of variation) was assessed from 34 participants. To define progressor knees, smallest detectable change (SDC) thresholds were computed from 11 participants with longitudinal test-retest scans. Binary logistic regression was used to evaluate the odds of progression in femorotibial cartilage thickness (threshold: -211 µm) for the quartile with the highest vs the quartile with the lowest s-scores. RESULTS: The test-retest precision was 69 µm for the entire femorotibial joint. Over 24 months, mean cartilage thickness loss in the entire femorotibial joint reached -174 µm (95% CI: [-207, -141] µm, 32.7% with progression). The s-score was not associated with 24-month progression rates by MRI (OR: 1.30, 95% CI: [0.52, 3.28]). CONCLUSION: IMI-APPROACH successfully enrolled participants with substantial cartilage thickness loss, although the machine-learning-estimated s-score was not observed to be predictive of cartilage thickness loss. IMI-APPROACH data will be used in subsequent analyses to evaluate the impact of clinical, imaging, biomechanical and biochemical biomarkers on cartilage thickness loss and to refine the machine-learning-based s-score. GOV IDENTIFICATION: NCT03883568.


Asunto(s)
Cartílago Articular , Osteoartritis de la Rodilla , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Cartílago Articular/diagnóstico por imagen , Progresión de la Enfermedad , Articulación de la Rodilla/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Osteoartritis de la Rodilla/diagnóstico por imagen , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA