RESUMEN
AIMS: Type 2 diabetes is associated with endothelial dysfunction leading to cardiovascular disease. CD34+ endothelial Progenitor Cells (EPCs) are responsible for endothelial repair and neo-angiogenesis and can be used as a cardiovascular disease risk biomarker. This study investigated whether the addition of saxagliptin, a DPP-IV inhibitor, to metformin, may reduce cardiovascular disease risk in addition to improving glycemic control in Type 2 diabetes patients. METHODS: In 12 week, double-blind, randomized placebo-controlled trial, 42 subjects already taking metformin 1-2 grams/day were randomized to placebo or saxagliptin 5 mg. Subjects aged 40-70 years with diabetes for < 10 years, with no known cardiovascular disease, BMI 25-39.9, HbA1C 6-9% were included. We evaluated EPCs number, function, surface markers and gene expression, in addition to arterial stiffness, blood biochemistries, resting energy expenditure, and body composition parameters. A mixed model regression to examine saxagliptin vs placebo, accounting for within-subject autocorrelation, was done with SAS (p < 0.05). RESULTS: Although there was no significant increase in CD34+ cell number, CD31+ cells percentage increased. Saxagliptin increased migration (in response to SDF1α) with a trend of higher colony formation count. MNCs cytometry showed higher percentage of CXCR4 double positivity for both CD34 and CD31 positive cells, indicating a functional improvement. Gene expression analysis showed an upregulation in CD34+ cells for antioxidant SOD1 (p < 0.05) and a downregulation in CD34- cells for IL-6 (p < 0.01). For arterial stiffness, both augmentation index and systolic blood pressure measures went down in saxagliptin subjects (p < 0.05). CONCLUSION: Saxagliptin, in combination with metformin, can help improve endothelial dysfunction in early diabetes before macrovascular complications appear. Trial registration Trial is registered under clinicaltrials.gov, NCT02024477.
Asunto(s)
Adamantano/análogos & derivados , Antígenos CD34/sangre , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Dipéptidos/administración & dosificación , Inhibidores de la Dipeptidil-Peptidasa IV/administración & dosificación , Células Progenitoras Endoteliales/efectos de los fármacos , Hipoglucemiantes/administración & dosificación , Metformina/administración & dosificación , Adamantano/administración & dosificación , Adamantano/efectos adversos , Adulto , Anciano , Presión Arterial/efectos de los fármacos , Biomarcadores/sangre , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/fisiopatología , Dipéptidos/efectos adversos , Inhibidores de la Dipeptidil-Peptidasa IV/efectos adversos , District of Columbia , Método Doble Ciego , Sinergismo Farmacológico , Quimioterapia Combinada , Células Progenitoras Endoteliales/metabolismo , Células Progenitoras Endoteliales/patología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Femenino , Humanos , Hipoglucemiantes/efectos adversos , Masculino , Metformina/efectos adversos , Persona de Mediana Edad , Factores de Tiempo , Resultado del Tratamiento , Rigidez Vascular/efectos de los fármacosRESUMEN
BACKGROUND: Anthracyclines, such as doxorubicin (Adriamycin), are highly effective chemotherapeutic agents, but are well known to cause myocardial dysfunction and life-threatening congestive heart failure (CHF) in some patients. METHODS: To generate new hypotheses about its etiology, genome-wide transcript analysis was performed on whole blood RNA from women that received doxorubicin-based chemotherapy and either did, or did not develop CHF, as defined by ejection fractions (EF)≤40%. Women with non-ischemic cardiomyopathy unrelated to chemotherapy were compared to breast cancer patients prior to chemo with normal EF to identify heart failure-related transcripts in women not receiving chemotherapy. Byproducts of oxidative stress in plasma were measured in a subset of patients. RESULTS: The results indicate that patients treated with doxorubicin showed sustained elevations in oxidative byproducts in plasma. At the RNA level, women who exhibited low EFs after chemotherapy had 260 transcripts that differed >2-fold (p<0.05) compared to women who received chemo but maintained normal EFs. Most of these transcripts (201) were not altered in non-chemotherapy patients with low EFs. Pathway analysis of the differentially expressed genes indicated enrichment in apoptosis-related transcripts. Notably, women with chemo-induced low EFs had a 4.8-fold decrease in T-cell leukemia/lymphoma 1A (TCL1A) transcripts. TCL1A is expressed in both cardiac and skeletal muscle, and is a known co-activator for AKT, one of the major pro-survival factors for cardiomyocytes. Further, women who developed low EFs had a 2-fold lower level of ABCB1 transcript, encoding the multidrug resistance protein 1 (MDR1), which is an efflux pump for doxorubicin, potentially leading to higher cardiac levels of drug. In vitro studies confirmed that inhibition of MDR1 by verapamil in rat H9C2 cardiomyocytes increased their susceptibility to doxorubicin-induced toxicity. CONCLUSIONS: It is proposed that chemo-induced cardiomyopathy may be due to a reduction in TCL1A levels, thereby causing increased apoptotic sensitivity, and leading to reduced cardiac MDR1 levels, causing higher cardiac levels of doxorubicin and intracellular free radicals. If so, screening for TCL1A and MDR1 SNPs or expression level in blood, might identify women at greatest risk of chemo-induced heart failure.