Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
J Cell Sci ; 134(21)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34651179

RESUMEN

Motile cilia have a '9+2' structure containing nine doublet microtubules and a central apparatus (CA) composed of two singlet microtubules with associated projections. The CA plays crucial roles in regulating ciliary motility. Defects in CA assembly or function usually result in motility-impaired or paralyzed cilia, which in humans causes disease. Despite their importance, the protein composition and functions of most CA projections remain largely unknown. Here, we combined genetic, proteomic and cryo-electron tomographic approaches to compare the CA of wild-type Chlamydomonas reinhardtii with those of three CA mutants. Our results show that two proteins, FAP42 and FAP246, are localized to the L-shaped C1b projection of the CA, where they interact with the candidate CA protein FAP413. FAP42 is a large protein that forms the peripheral 'beam' of the C1b projection, and the FAP246-FAP413 subcomplex serves as the 'bracket' between the beam (FAP42) and the C1b 'pillar' that attaches the projection to the C1 microtubule. The FAP246-FAP413-FAP42 complex is essential for stable assembly of the C1b, C1f and C2b projections, and loss of these proteins leads to ciliary motility defects.


Asunto(s)
Chlamydomonas reinhardtii , Flagelos , Axonema , Chlamydomonas reinhardtii/genética , Cilios , Humanos , Microtúbulos , Proteómica
2.
J Cell Sci ; 134(12)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33988244

RESUMEN

Cilia are essential organelles required for cell signaling and motility. Nearly all motile cilia have a '9+2' axoneme composed of nine outer doublet microtubules plus two central microtubules; the central microtubules together with their projections are termed the central apparatus (CA). In Chlamydomonas reinhardtii, a model organism for studying cilia, 30 proteins are known CA components, and ∼36 more are predicted to be CA proteins. Among the candidate CA proteins is the highly conserved FAP70 (CFAP70 in humans), which also has been reported to be associated with the doublet microtubules. Here, we determined by super-resolution structured illumination microscopy that FAP70 is located exclusively in the CA, and show by cryo-electron microscopy that its N-terminus is located at the base of the C2a projection of the CA. We also found that fap70-1 mutant axonemes lack most of the C2a projection. Mass spectrometry revealed that fap70-1 axonemes lack not only FAP70 but two other conserved candidate CA proteins, FAP65 (CFAP65 in humans) and FAP147 (MYCBPAP in humans). Finally, FAP65 and FAP147 co-immunoprecipitated with HA-tagged FAP70. Taken together, these data identify FAP70, FAP65 and FAP147 as the first defining components of the C2a projection.


Asunto(s)
Chlamydomonas reinhardtii , Chlamydomonas , Axonema , Proteínas Portadoras , Chlamydomonas reinhardtii/genética , Cilios , Microscopía por Crioelectrón , Flagelos , Humanos , Microtúbulos
3.
J Cell Sci ; 133(17)2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32801124

RESUMEN

Tubulin enters the cilium by diffusion and motor-based intraflagellar transport (IFT). However, the respective contribution of each route in providing tubulin for axonemal assembly remains unknown. Using Chlamydomonas, we attenuated IFT-based tubulin transport of GFP-ß-tubulin by altering the IFT74N-IFT81N tubulin-binding module and the C-terminal E-hook of tubulin. E-hook-deficient GFP-ß-tubulin was incorporated into the axonemal microtubules, but its transport frequency by IFT was reduced by ∼90% in control cells and essentially abolished when the tubulin-binding site of IFT81 was incapacitated. Despite the strong reduction in IFT, the proportion of E-hook-deficient GFP-ß-tubulin in the axoneme was only moderately reduced. In vivo imaging showed more GFP-ß-tubulin particles entering cilia by diffusion than by IFT. Extrapolated to endogenous tubulin, the data indicate that diffusion provides most of the tubulin required for axonemal assembly. We propose that IFT of tubulin is nevertheless needed for ciliogenesis, because it augments the tubulin pool supplied to the ciliary tip by diffusion, thus ensuring that free tubulin there is maintained at the critical concentration for plus-end microtubule assembly during rapid ciliary growth.


Asunto(s)
Chlamydomonas , Tubulina (Proteína) , Axonema/metabolismo , Transporte Biológico , Chlamydomonas/metabolismo , Cilios/metabolismo , Flagelos/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
4.
J Cell Sci ; 132(3)2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30659111

RESUMEN

Intraflagellar transport (IFT), which is essential for the formation and function of cilia in most organisms, is the trafficking of IFT trains (i.e. assemblies of IFT particles) that carry cargo within the cilium. Defects in IFT cause several human diseases. IFT trains contain the complexes IFT-A and IFT-B. To dissect the functions of these complexes, we studied a Chlamydomonas mutant that is null for the IFT-A protein IFT140. The mutation had no effect on IFT-B but destabilized IFT-A, preventing flagella assembly. Therefore, IFT-A assembly requires IFT140. Truncated IFT140, which lacks the N-terminal WD repeats of the protein, partially rescued IFT and supported formation of half-length flagella that contained normal levels of IFT-B but greatly reduced amounts of IFT-A. The axonemes of these flagella had normal ultrastructure and, as investigated by SDS-PAGE, normal composition. However, composition of the flagellar 'membrane+matrix' was abnormal. Analysis of the latter fraction by mass spectrometry revealed decreases in small GTPases, lipid-anchored proteins and cell signaling proteins. Thus, IFT-A is specialized for the import of membrane-associated proteins. Abnormal levels of the latter are likely to account for the multiple phenotypes of patients with defects in IFT140.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas Algáceas/genética , Membrana Celular/metabolismo , Chlamydomonas reinhardtii/genética , Cilios/metabolismo , Flagelos/metabolismo , Proteínas Ligadas a Lípidos/genética , Proteínas Algáceas/química , Proteínas Algáceas/metabolismo , Axonema/metabolismo , Axonema/ultraestructura , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Membrana Celular/ultraestructura , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/metabolismo , Ataxia Cerebelosa/patología , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/ultraestructura , Cilios/ultraestructura , Síndrome de Ellis-Van Creveld/genética , Síndrome de Ellis-Van Creveld/metabolismo , Síndrome de Ellis-Van Creveld/patología , Flagelos/ultraestructura , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas Ligadas a Lípidos/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Mutación , Organismos Modificados Genéticamente , Transporte de Proteínas , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología , Transducción de Señal , Proteína Fluorescente Roja
5.
J Cell Sci ; 129(10): 2106-19, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-27068536

RESUMEN

The assembly and maintenance of most cilia and flagella rely on intraflagellar transport (IFT). Recent in vitro studies have suggested that, together, the calponin-homology domain within the IFT81 N-terminus and the highly basic N-terminus of IFT74 form a module for IFT of tubulin. By using Chlamydomonas mutants for IFT81 and IFT74, we tested this hypothesis in vivo. Modification of the predicted tubulin-binding residues in IFT81 did not significantly affect basic anterograde IFT and length of steady-state flagella but slowed down flagellar regeneration, a phenotype similar to that seen in a strain that lacks the IFT74 N-terminus. In both mutants, the frequency of tubulin transport by IFT was greatly reduced. A double mutant that combined the modifications to IFT81 and IFT74 was able to form only very short flagella. These results indicate that, together, the IFT81 and IFT74 N-termini are crucial for flagellar assembly, and are likely to function as the main module for IFT of tubulin.


Asunto(s)
Proteínas Portadoras/genética , Chlamydomonas reinhardtii/genética , Flagelos/genética , Tubulina (Proteína)/genética , Transporte Biológico/genética , Proteínas Portadoras/metabolismo , Chlamydomonas reinhardtii/metabolismo , Cilios/genética , Cilios/metabolismo , Flagelos/metabolismo , Fenotipo , Unión Proteica , Tubulina (Proteína)/metabolismo
6.
Hum Mol Genet ; 24(14): 3994-4005, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25877302

RESUMEN

Recent studies identified a previously uncharacterized gene C5ORF42 (JBTS17) as a major cause of Joubert syndrome (JBTS), a ciliopathy associated with cerebellar abnormalities and other birth defects. Here we report the first Jbts17 mutant mouse model, Heart Under Glass (Hug), recovered from a forward genetic screen. Exome sequencing identified Hug as a S235P missense mutation in the mouse homolog of JBTS17 (2410089e03rik). Hug mutants exhibit multiple birth defects typical of ciliopathies, including skeletal dysplasia, polydactyly, craniofacial anomalies, kidney cysts and eye defects. Some Hug mutants exhibit congenital heart defects ranging from mild pulmonary stenosis to severe pulmonary atresia. Immunostaining showed JBTS17 is localized in the cilia transition zone. Fibroblasts from Hug mutant mice and a JBTS patient with a JBTS17 mutation showed ciliogenesis defects. Significantly, Hug mutant fibroblasts showed loss of not only JBTS17, but also NPHP1 and CEP290 from the cilia transition zone. Hug mutants exhibited reduced ciliation in the cerebellum. This was associated with reduction in cerebellar foliation. Using a fibroblast wound-healing assay, we showed Hug mutant cells cannot establish cell polarity required for directional cell migration. However, stereocilia patterning was grossly normal in the cochlea, indicating planar cell polarity is not markedly affected. Overall, we showed the JBTS pathophysiology is replicated in the Hug mutant mice harboring a Jbts17 mutation. Our findings demonstrate JBTS17 is a cilia transition zone component that acts upstream of other Joubert syndrome associated transition zone proteins NPHP1 and CEP290, indicating its importance in the pathogenesis of Joubert syndrome.


Asunto(s)
Enfermedades Cerebelosas/genética , Cerebelo/anomalías , Proteínas de la Membrana/genética , Retina/anomalías , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Animales , Antígenos de Neoplasias , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Polaridad Celular , Células Cultivadas , Enfermedades Cerebelosas/patología , Cerebelo/patología , Cilios , Proteínas del Citoesqueleto , Modelos Animales de Enfermedad , Anomalías del Ojo/genética , Anomalías del Ojo/patología , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/patología , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Embarazo , Transporte de Proteínas/genética , Retina/patología
7.
Proc Natl Acad Sci U S A ; 111(26): 9461-6, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24979786

RESUMEN

Outer arm dynein (OAD) in cilia and flagella is bound to the outer doublet microtubules every 24 nm. Periodic binding of OADs at specific sites is important for efficient cilia/flagella beating; however, the molecular mechanism that specifies OAD arrangement remains elusive. Studies using the green alga Chlamydomonas reinhardtii have shown that the OAD-docking complex (ODA-DC), a heterotrimeric complex present at the OAD base, functions as the OAD docking site on the doublet. We find that the ODA-DC has an ellipsoidal shape ∼24 nm in length. In mutant axonemes that lack OAD but retain the ODA-DC, ODA-DC molecules are aligned in an end-to-end manner along the outer doublets. When flagella of a mutant lacking ODA-DCs are supplied with ODA-DCs upon gamete fusion, ODA-DC molecules first bind to the mutant axonemes in the proximal region, and the occupied region gradually extends toward the tip, followed by binding of OADs. This and other results indicate that a cooperative association of the ODA-DC underlies its function as the OAD-docking site and is the determinant of the 24-nm periodicity.


Asunto(s)
Axonema/metabolismo , Dineínas/metabolismo , Sustancias Macromoleculares/metabolismo , Microtúbulos/metabolismo , Modelos Biológicos , Western Blotting , Cromatografía en Gel , Electroforesis en Gel de Poliacrilamida , Electroporación , Técnica del Anticuerpo Fluorescente , Microscopía Electrónica , Microscopía Fluorescente , Unión Proteica , Colorantes de Rosanilina , Ultracentrifugación
8.
J Biol Chem ; 290(9): 5341-53, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25564608

RESUMEN

Cryo-electron tomography (cryo-ET) has reached nanoscale resolution for in situ three-dimensional imaging of macromolecular complexes and organelles. Yet its current resolution is not sufficient to precisely localize or identify most proteins in situ; for example, the location and arrangement of components of the nexin-dynein regulatory complex (N-DRC), a key regulator of ciliary/flagellar motility that is conserved from algae to humans, have remained elusive despite many cryo-ET studies of cilia and flagella. Here, we developed an in situ localization method that combines cryo-ET/subtomogram averaging with the clonable SNAP tag, a widely used cell biological probe to visualize fusion proteins by fluorescence microscopy. Using this hybrid approach, we precisely determined the locations of the N and C termini of DRC3 and the C terminus of DRC4 within the three-dimensional structure of the N-DRC in Chlamydomonas flagella. Our data demonstrate that fusion of SNAP with target proteins allowed for protein localization with high efficiency and fidelity using SNAP-linked gold nanoparticles, without disrupting the native assembly, structure, or function of the flagella. After cryo-ET and subtomogram averaging, we localized DRC3 to the L1 projection of the nexin linker, which interacts directly with a dynein motor, whereas DRC4 was observed to stretch along the N-DRC base plate to the nexin linker. Application of the technique developed here to the N-DRC revealed new insights into the organization and regulatory mechanism of this complex, and provides a valuable tool for the structural dissection of macromolecular complexes in situ.


Asunto(s)
Proteínas Algáceas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Dineínas/metabolismo , Tomografía con Microscopio Electrónico/métodos , Flagelos/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Algáceas/genética , Axonema/genética , Axonema/metabolismo , Axonema/ultraestructura , Western Blotting , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/fisiología , Dineínas/genética , Flagelos/genética , Flagelos/ultraestructura , Microscopía Fluorescente , Modelos Moleculares , Movimiento , Complejos Multiproteicos/química , Mutación , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Reproducibilidad de los Resultados
9.
J Cell Sci ; 127(Pt 21): 4714-27, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25150219

RESUMEN

The protein nephrocystin-4 (NPHP4) is widespread in ciliated organisms, and defects in NPHP4 cause nephronophthisis and blindness in humans. To learn more about the function of NPHP4, we have studied it in Chlamydomonas reinhardtii. NPHP4 is stably incorporated into the distal part of the flagellar transition zone, close to the membrane and distal to CEP290, another transition zone protein. Therefore, these two proteins, which are incorporated into the transition zone independently of each other, define different domains of the transition zone. An nphp4-null mutant forms flagella with nearly normal length, ultrastructure and intraflagellar transport. When fractions from isolated wild-type and nphp4 flagella were compared, few differences were observed between the axonemes, but the amounts of certain membrane proteins were greatly reduced in the mutant flagella, and cellular housekeeping proteins >50 kDa were no longer excluded from mutant flagella. Therefore, NPHP4 functions at the transition zone as an essential part of a barrier that regulates both membrane and soluble protein composition of flagella. The phenotypic consequences of NPHP4 mutations in humans likely follow from protein mislocalization due to defects in the transition zone barrier.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Cilios/metabolismo , Flagelos/metabolismo , Proteínas de la Membrana/metabolismo , Movimiento Celular/fisiología , Transporte de Proteínas/fisiología
10.
Proc Natl Acad Sci U S A ; 110(10): 3925-30, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23431147

RESUMEN

Cilia and flagella are microtubule-based organelles that protrude from the cell body. Ciliary assembly requires intraflagellar transport (IFT), a motile system that delivers cargo from the cell body to the flagellar tip for assembly. The process controlling injections of IFT proteins into the flagellar compartment is, therefore, crucial to ciliogenesis. Extensive biochemical and genetic analyses have determined the molecular machinery of IFT, but these studies do not explain what regulates IFT injection rate. Here, we provide evidence that IFT injections result from avalanche-like releases of accumulated IFT material at the flagellar base and that the key regulated feature of length control is the recruitment of IFT material to the flagellar base. We used total internal reflection fluorescence microscopy of IFT proteins in live cells to quantify the size and frequency of injections over time. The injection dynamics reveal a power-law tailed distribution of injection event sizes and a negative correlation between injection size and frequency, as well as rich behaviors such as quasiperiodicity, bursting, and long-memory effects tied to the size of the localized load of IFT material awaiting injection at the flagellar base, collectively indicating that IFT injection dynamics result from avalanche-like behavior. Computational models based on avalanching recapitulate observed IFT dynamics, and we further show that the flagellar Ras-related nuclear protein (Ran) guanosine 5'-triphosphate (GTP) gradient can in theory act as a flagellar length sensor to regulate this localized accumulation of IFT. These results demonstrate that a self-organizing, physical mechanism can control a biochemically complex intracellular transport pathway.


Asunto(s)
Chlamydomonas reinhardtii/fisiología , Cilios/fisiología , Transporte Biológico Activo , Chlamydomonas reinhardtii/genética , Flagelos/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Microscopía Fluorescente , Microscopía por Video , Modelos Biológicos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Biochemistry ; 53(28): 4573-89, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-24964018

RESUMEN

The nuclear genome of the model organism Chlamydomonas reinhardtii contains genes for a dozen hemoglobins of the truncated lineage. Of those, THB1 is known to be expressed, but the product and its function have not yet been characterized. We present mutagenesis, optical, and nuclear magnetic resonance data for the recombinant protein and show that at pH near neutral in the absence of added ligand, THB1 coordinates the heme iron with the canonical proximal histidine and a distal lysine. In the cyanomet state, THB1 is structurally similar to other known truncated hemoglobins, particularly the heme domain of Chlamydomonas eugametos LI637, a light-induced chloroplastic hemoglobin. Recombinant THB1 is capable of binding nitric oxide (NO(•)) in either the ferric or ferrous state and has efficient NO(•) dioxygenase activity. By using different C. reinhardtii strains and growth conditions, we demonstrate that the expression of THB1 is under the control of the NIT2 regulatory gene and that the hemoglobin is linked to the nitrogen assimilation pathway.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Proteínas de Cloroplastos/biosíntesis , Regulación de la Expresión Génica de las Plantas/fisiología , Hemoglobinas/biosíntesis , Lisina/metabolismo , Nitrógeno/metabolismo , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/genética , Proteínas de Cloroplastos/química , Hemo/química , Hemo/metabolismo , Hemoglobinas/química , Hemoglobinas/genética , Concentración de Iones de Hidrógeno , Lisina/química , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Nitrógeno/química
12.
J Cell Sci ; 125(Pt 16): 3904-13, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22573824

RESUMEN

Virtually all motile eukaryotic cilia and flagella have a '9+2' axoneme in which nine doublet microtubules surround two singlet microtubules. Associated with the central pair of microtubules are protein complexes that form at least seven biochemically and structurally distinct central pair projections. Analysis of mutants lacking specific projections has indicated that each may play a unique role in the control of flagellar motility. One of these is the C1d projection previously shown to contain the proteins FAP54, FAP46, FAP74 and FAP221/Pcdp1, which exhibits Ca(2+)-sensitive calmodulin binding. Here we report the isolation and characterization of a Chlamydomonas reinhardtii null mutant for FAP46. This mutant, fap46-1, lacks the C1d projection and has impaired motility, confirming the importance of this projection for normal flagellar movement. Those cells that are motile have severe defects in phototaxis and the photoshock response, underscoring a role for the C1d projection in Ca(2+)-mediated flagellar behavior. The data also reveal for the first time that the C1d projection is involved in the control of interdoublet sliding velocity. Our studies further identify a novel C1d subunit that we term C1d-87, give new insight into relationships between the C1d subunits, and provide evidence for multiple sites of calmodulin interaction within the C1d projection. These results represent significant advances in our understanding of an important but little studied axonemal structure.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Cilios/metabolismo , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Axonema/metabolismo , Movimiento Celular/fisiología , Chlamydomonas reinhardtii/crecimiento & desarrollo , Flagelos/metabolismo , Humanos , Datos de Secuencia Molecular , Unión Proteica
13.
Bioscience ; 64(12): 1126-1137, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25960570

RESUMEN

In recent decades, cilia have moved from relative obscurity to a position of importance for understanding multiple complex human diseases. Now termed the ciliopathies, these diseases inflict devastating effects on millions of people worldwide. In this review, written primarily for teachers and students who may not yet be aware of the recent exciting developments in this field, we provide a general overview of our current understanding of cilia and human disease. We start with an introduction to cilia structure and assembly and indicate where they are found in the human body. We then discuss the clinical features of selected ciliopathies, with an emphasis on primary ciliary dyskinesia, polycystic kidney disease, and retinal degeneration. The history of ciliopathy research involves a fascinating interplay between basic and clinical sciences, highlighted in a timeline. Finally, we summarize the relative strengths of individual model organisms for ciliopathy research; many of these are suitable for classroom use.

14.
Artículo en Inglés | MEDLINE | ID: mdl-38456596

RESUMEN

Most cells tightly control the length of their cilia. The regulation likely involves intraflagellar transport (IFT), a bidirectional motility of multi-subunit particles organized into trains that deliver building blocks into the organelle. In Chlamydomonas, the anterograde IFT motor kinesin-2 consists of the motor subunits FLA8 and FLA10 and the nonmotor subunit KAP. KAP dissociates from IFT at the ciliary tip and diffuses back to the cell body. This observation led to the diffusion-as-a-ruler model of ciliary length control, which postulates that KAP is progressively sequestered into elongating cilia because its return to the cell body will require increasingly more time, limiting motor availability at the ciliary base, train assembly, building block supply, and ciliary growth. Here, we show that Chlamydomonas FLA8 also returns to the cell body by diffusion. However, more than 95% of KAP and FLA8 are present in the cell body and, at a given time, just ~1% of the motor participates in IFT. After repeated photobleaching of both cilia, IFT of fluorescent kinesin subunits continued indicating that kinesin-2 cycles from the large cell-body pool through the cilia and back. Furthermore, growing and full-length cilia contained similar amounts of kinesin-2 subunits and the size of the motor pool at the base changed only slightly with ciliary length. These observations are incompatible with the diffusion-as-a-ruler model, but rather support an "on-demand model," in which the cargo load of the trains is regulated to assemble cilia of the desired length.

15.
J Cell Biol ; 176(4): 473-82, 2007 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-17296796

RESUMEN

Mutations in Hydin cause hydrocephalus in mice, and HYDIN is a strong candidate for causing hydrocephalus in humans. The gene is conserved in ciliated species, including Chlamydomonas reinhardtii. An antibody raised against C. reinhardtii hydin was specific for an approximately 540-kD flagellar protein that is missing from axonemes of strains that lack the central pair (CP). The antibody specifically decorated the C2 microtubule of the CP apparatus. An 80% knock down of hydin resulted in short flagella lacking the C2b projection of the C2 microtubule; the flagella were arrested at the switch points between the effective and recovery strokes. Biochemical analyses revealed that hydin interacts with the CP proteins CPC1 and kinesin-like protein 1 (KLP1). In conclusion, C. reinhardtii hydin is a CP protein required for flagellar motility and probably involved in the CP-radial spoke control pathway that regulates dynein arm activity. Hydrocephalus caused by mutations in hydin likely involves the malfunctioning of cilia because of a defect in the CP.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Flagelos/metabolismo , Locomoción/fisiología , Proteínas de Microfilamentos/metabolismo , Microtúbulos/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Chlamydomonas reinhardtii/ultraestructura , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo/fisiología , Flagelos/ultraestructura , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hidrocefalia/genética , Hidrocefalia/metabolismo , Hidrocefalia/fisiopatología , Proteínas de Microfilamentos/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Mutación/genética , Proteínas Protozoarias/genética
16.
J Cell Biol ; 176(5): 653-65, 2007 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-17312020

RESUMEN

Intraflagellar transport (IFT), which is the bidirectional movement of particles within flagella, is required for flagellar assembly. IFT particles are composed of approximately 16 proteins, which are organized into complexes A and B. We have cloned Chlamydomonas reinhardtii and mouse IFT46, and show that IFT46 is a highly conserved complex B protein in both organisms. A C. reinhardtii insertional mutant null for IFT46 has short, paralyzed flagella lacking dynein arms and with central pair defects. The mutant has greatly reduced levels of most complex B proteins, indicating that IFT46 is necessary for complex B stability. A partial suppressor mutation restores flagellar length to the ift46 mutant. IFT46 is still absent, but levels of the other IFT particle proteins are largely restored, indicating that complex B is stabilized in the suppressed strain. Axonemal ultrastructure is restored, except that the outer arms are still missing, although outer arm subunits are present in the cytoplasm. Thus, IFT46 is specifically required for transporting outer arms into the flagellum.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Dineínas/metabolismo , Flagelos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas Protozoarias/fisiología , Secuencia de Aminoácidos , Animales , Movimiento Celular , Chlamydomonas reinhardtii/ultraestructura , Clonación Molecular , Secuencia Conservada , Proteínas del Citoesqueleto , Flagelos/ultraestructura , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Datos de Secuencia Molecular , Mutación , Transporte de Proteínas , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Alineación de Secuencia
17.
J Cell Biol ; 179(3): 501-14, 2007 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-17984324

RESUMEN

To analyze the function of ciliary polycystic kidney disease 2 (PKD2) and its relationship to intraflagellar transport (IFT), we cloned the gene encoding Chlamydomonas reinhardtii PKD2 (CrPKD2), a protein with the characteristics of PKD2 family members. Three forms of this protein (210, 120, and 90 kD) were detected in whole cells; the two smaller forms are cleavage products of the 210-kD protein and were the predominant forms in flagella. In cells expressing CrPKD2-GFP, about 10% of flagellar CrPKD2-GFP was observed moving in the flagellar membrane. When IFT was blocked, fluorescence recovery after photobleaching of flagellar CrPKD2-GFP was attenuated and CrPKD2 accumulated in the flagella. Flagellar CrPKD2 increased fourfold during gametogenesis, and several CrPKD2 RNA interference strains showed defects in flagella-dependent mating. These results suggest that the CrPKD2 cation channel is involved in coupling flagellar adhesion at the beginning of mating to the increase in flagellar calcium required for subsequent steps in mating.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Flagelos/metabolismo , Canales Catiónicos TRPP/química , Secuencia de Aminoácidos , Animales , Transporte Biológico , Adhesión Celular , Clonación Molecular , Proteínas Fluorescentes Verdes/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Estructura Terciaria de Proteína , Interferencia de ARN , Canales Catiónicos TRPP/metabolismo , Temperatura
18.
PLoS One ; 17(12): e0278972, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36490276

RESUMEN

Chlamydomonas reinhardtii is an important model organism for the study of many cellular processes, and protein tagging is an increasingly indispensable tool for these studies. To circumvent the disadvantages of conventional approaches in creating a tagged cell line, which involve transforming either a wild-type or null-mutant cell line with an exogenous DNA construct that inserts randomly into the genome, we developed a strategy to tag the endogenous gene in situ. The strategy utilizes TIM, a CRISPR/Cas9-based method for targeted insertional mutagenesis in C. reinhardtii. We have tested the strategy on two genes: LF5/CDKL5, lack of which causes a long-flagella phenotype, and Cre09.g416350/NAP1L1, which has not been studied previously in C. reinhardtii. We successfully tagged the C-terminus of wild-type LF5 with the hemagglutinin (HA) tag with an efficiency of 7.4%. Sequencing confirmed that these strains are correctly edited. Western blotting confirmed the expression of HA-tagged LF5, and immunofluorescence microscopy showed that LF5-HA is localized normally. These strains have normal length flagella and appear wild type. We successfully tagged the N-terminus of Cre09.g416350 with mNeonGreen-3xFLAG with an efficiency of 9%. Sequencing showed that the tag region in these strains is as expected. Western blotting confirmed the expression of tagged protein of the expected size in these strains, which appeared to have normal cell size, growth rate, and swimming speed. This is the first time that C. reinhardtii endogenous genes have been edited in situ to express a wild-type tagged protein. This effective, efficient, and convenient TIM-tagging strategy promises to be a useful tool for the study of nuclear genes, including essential genes, in C. reinhardtii.


Asunto(s)
Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Sistemas CRISPR-Cas/genética , Mutagénesis Insercional , Flagelos/genética , Genoma
19.
J Cell Biol ; 221(2)2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35006274

RESUMEN

Dyneins are highly complex, multicomponent, microtubule-based molecular motors. These enzymes are responsible for numerous motile behaviors in cytoplasm, mediate retrograde intraflagellar transport (IFT), and power ciliary and flagellar motility. Variants in multiple genes encoding dyneins, outer dynein arm (ODA) docking complex subunits, and cytoplasmic factors involved in axonemal dynein preassembly (DNAAFs) are associated with human ciliopathies and are of clinical interest. Therefore, clear communication within this field is particularly important. Standardizing gene nomenclature, and basing it on orthology where possible, facilitates discussion and genetic comparison across species. Here, we discuss how the human gene nomenclature for dyneins, ODA docking complex subunits, and DNAAFs has been updated to be more functionally informative and consistent with that of the unicellular green alga Chlamydomonas reinhardtii, a key model organism for studying dyneins and ciliary function. We also detail additional nomenclature updates for vertebrate-specific genes that encode dynein chains and other proteins involved in dynein complex assembly.


Asunto(s)
Consenso , Dineínas/clasificación , Terminología como Asunto , Animales , Axonema/metabolismo , Humanos , Fenotipo , Estándares de Referencia
20.
Curr Opin Cell Biol ; 15(1): 105-10, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12517711

RESUMEN

The primary cilium is a generally non-motile cilium that occurs singly on most cells in the vertebrate body. The function of this organelle, which has been the subject of much speculation but little experimentation, has been unknown. Recent findings reveal that the primary cilium is an antenna displaying specific receptors and relaying signals from these receptors to the cell body. For example, kidney primary cilia display polycystin-2, which forms part of a Ca2+ channel that initiates a signal that controls cell differentiation and proliferation. Kidney primary cilia also are mechanosensors that, when bent, initiate a Ca2+ signal that spreads throughout the cell and to neighboring cells. Primary cilia on other cell types specifically display different receptors, including those for somatostatin and serotonin.


Asunto(s)
Membrana Celular/metabolismo , Cilios/metabolismo , Células Eucariotas/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal/fisiología , Animales , Canales de Calcio/metabolismo , Membrana Celular/ultraestructura , Cilios/ultraestructura , Células Eucariotas/ultraestructura , Humanos , Riñón/metabolismo , Riñón/ultraestructura , Proteínas de la Membrana/metabolismo , Receptores de Superficie Celular/ultraestructura , Canales Catiónicos TRPP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA