Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Cell ; 171(7): 1663-1677.e16, 2017 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-29224779

RESUMEN

Social behaviors are crucial to all mammals. Although the prelimbic cortex (PL, part of medial prefrontal cortex) has been implicated in social behavior, it is not clear which neurons are relevant or how they contribute. We found that PL contains anatomically and molecularly distinct subpopulations that target three downstream regions that have been implicated in social behavior: the nucleus accumbens (NAc), amygdala, and ventral tegmental area. Activation of NAc-projecting PL neurons (PL-NAc), but not the other subpopulations, decreased the preference for a social target. To determine what information PL-NAc neurons convey, we selectively recorded from them and found that individual neurons were active during social investigation, but only in specific spatial locations. Spatially specific manipulation of these neurons bidirectionally regulated the formation of a social-spatial association. Thus, the unexpected combination of social and spatial information within the PL-NAc may contribute to social behavior by supporting social-spatial learning.


Asunto(s)
Sistema Límbico , Neuronas/citología , Núcleo Accumbens/citología , Corteza Prefrontal/citología , Conducta Social , Conducta Espacial , Amígdala del Cerebelo/fisiología , Animales , Aprendizaje , Ratones , Vías Nerviosas , Neuronas/fisiología , Núcleo Accumbens/fisiología , Corteza Prefrontal/fisiología , Área Tegmental Ventral/fisiología
2.
Cell ; 165(7): 1776-1788, 2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27238022

RESUMEN

A major challenge in understanding the cellular diversity of the brain has been linking activity during behavior with standard cellular typology. For example, it has not been possible to determine whether principal neurons in prefrontal cortex active during distinct experiences represent separable cell types, and it is not known whether these differentially active cells exert distinct causal influences on behavior. Here, we develop quantitative hydrogel-based technologies to connect activity in cells reporting on behavioral experience with measures for both brain-wide wiring and molecular phenotype. We find that positive and negative-valence experiences in prefrontal cortex are represented by cell populations that differ in their causal impact on behavior, long-range wiring, and gene expression profiles, with the major discriminant being expression of the adaptation-linked gene NPAS4. These findings illuminate cellular logic of prefrontal cortex information processing and natural adaptive behavior and may point the way to cell-type-specific understanding and treatment of disease-associated states.


Asunto(s)
Conducta Animal , Mapeo Encefálico/métodos , Corteza Prefrontal/citología , Animales , Conducta Apetitiva , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Cocaína/administración & dosificación , Electrochoque , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Corteza Prefrontal/metabolismo
3.
Nature ; 611(7934): 124-132, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36261520

RESUMEN

Chronic stress can have lasting adverse consequences in some individuals, yet others are resilient to the same stressor1,2. Susceptible and resilient individuals exhibit differences in the intrinsic properties of mesolimbic dopamine (DA) neurons after the stressful experience is over3-8. However, the causal links between DA, behaviour during stress and individual differences in resilience are unknown. Here we recorded behaviour in mice simultaneously with DA neuron activity in projections to the nucleus accumbens (NAc) (which signals reward9-12) and the tail striatum (TS) (which signals threat13-16) during social defeat. Supervised and unsupervised behavioural quantification revealed that during stress, resilient and susceptible mice use different behavioural strategies and have distinct activity patterns in DA terminals in the NAc (but not the TS). Neurally, resilient mice have greater activity near the aggressor, including at the onset of fighting back. Conversely, susceptible mice have greater activity at the offset of attacks and onset of fleeing. We also performed optogenetic stimulation of NAc-projecting DA neurons in open loop (randomly timed) during defeat or timed to specific behaviours using real-time behavioural classification. Both open-loop and fighting-back-timed activation promoted resilience and reorganized behaviour during defeat towards resilience-associated patterns. Together, these data provide a link between DA neural activity, resilience and resilience-associated behaviour during the experience of stress.


Asunto(s)
Dopamina , Neuronas Dopaminérgicas , Resiliencia Psicológica , Animales , Ratones , Dopamina/metabolismo , Neuronas Dopaminérgicas/fisiología , Ratones Endogámicos C57BL , Núcleo Accumbens/fisiología , Recompensa , Estrés Psicológico , Optogenética , Neostriado/metabolismo , Conducta Animal
4.
Nature ; 570(7762): 509-513, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31142844

RESUMEN

There is increased appreciation that dopamine neurons in the midbrain respond not only to reward1 and reward-predicting cues1,2, but also to other variables such as the distance to reward3, movements4-9 and behavioural choices10,11. An important question is how the responses to these diverse variables are organized across the population of dopamine neurons. Whether individual dopamine neurons multiplex several variables, or whether there are subsets of neurons that are specialized in encoding specific behavioural variables remains unclear. This fundamental question has been difficult to resolve because recordings from large populations of individual dopamine neurons have not been performed in a behavioural task with sufficient complexity to examine these diverse variables simultaneously. Here, to address this gap, we used two-photon calcium imaging through an implanted lens to record the activity of more than 300 dopamine neurons from the ventral tegmental area of the mouse midbrain during a complex decision-making task. As mice navigated in a virtual-reality environment, dopamine neurons encoded an array of sensory, motor and cognitive variables. These responses were functionally clustered, such that subpopulations of neurons transmitted information about a subset of behavioural variables, in addition to encoding reward. These functional clusters were spatially organized, with neighbouring neurons more likely to be part of the same cluster. Together with the topography between dopamine neurons and their projections, this specialization and anatomical organization may aid downstream circuits in correctly interpreting the wide range of signals transmitted by dopamine neurons.


Asunto(s)
Cognición , Neuronas Dopaminérgicas/fisiología , Actividad Motora , Sensación , Área Tegmental Ventral/citología , Animales , Fenómenos Biomecánicos , Calcio/metabolismo , Condicionamiento Clásico , Señales (Psicología) , Toma de Decisiones , Femenino , Masculino , Ratones , Recompensa , Navegación Espacial , Área Tegmental Ventral/fisiología , Realidad Virtual
5.
Nat Rev Neurosci ; 20(8): 482-494, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31171839

RESUMEN

The striatum is essential for learning which actions lead to reward and for implementing those actions. Decades of experimental and theoretical work have led to several influential theories and hypotheses about how the striatal circuit mediates these functions. However, owing to technical limitations, testing these hypotheses rigorously has been difficult. In this Review, we briefly describe some of the classic ideas of striatal function. We then review recent studies in rodents that take advantage of optical and genetic methods to test these classic ideas by recording and manipulating identified cell types within the circuit. This new body of work has provided experimental support of some longstanding ideas about the striatal circuit and has uncovered critical aspects of the classic view that are incorrect or incomplete.


Asunto(s)
Cuerpo Estriado/fisiología , Toma de Decisiones/fisiología , Aprendizaje/fisiología , Vías Nerviosas/fisiología , Recompensa , Animales , Neuronas/fisiología
6.
Nature ; 493(7433): 537-541, 2013 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-23235822

RESUMEN

Major depression is characterized by diverse debilitating symptoms that include hopelessness and anhedonia. Dopamine neurons involved in reward and motivation are among many neural populations that have been hypothesized to be relevant, and certain antidepressant treatments, including medications and brain stimulation therapies, can influence the complex dopamine system. Until now it has not been possible to test this hypothesis directly, even in animal models, as existing therapeutic interventions are unable to specifically target dopamine neurons. Here we investigated directly the causal contributions of defined dopamine neurons to multidimensional depression-like phenotypes induced by chronic mild stress, by integrating behavioural, pharmacological, optogenetic and electrophysiological methods in freely moving rodents. We found that bidirectional control (inhibition or excitation) of specified midbrain dopamine neurons immediately and bidirectionally modulates (induces or relieves) multiple independent depression symptoms caused by chronic stress. By probing the circuit implementation of these effects, we observed that optogenetic recruitment of these dopamine neurons potently alters the neural encoding of depression-related behaviours in the downstream nucleus accumbens of freely moving rodents, suggesting that processes affecting depression symptoms may involve alterations in the neural encoding of action in limbic circuitry.


Asunto(s)
Depresión/fisiopatología , Neuronas Dopaminérgicas/metabolismo , Animales , Depresión/inducido químicamente , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de la radiación , Femenino , Masculino , Ratones , Modelos Neurológicos , Núcleo Accumbens/metabolismo , Optogenética , Fenotipo , Ratas , Ratas Long-Evans , Estrés Psicológico/fisiopatología , Factores de Tiempo , Área Tegmental Ventral/citología
7.
J Neurosci ; 34(13): 4509-18, 2014 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-24671996

RESUMEN

Cholinergic transmission in the striatal complex is critical for the modulation of the activity of local microcircuits and dopamine release. Release of acetylcholine has been considered to originate exclusively from a subtype of striatal interneuron that provides widespread innervation of the striatum. Cholinergic neurons of the pedunculopontine (PPN) and laterodorsal tegmental (LDT) nuclei indirectly influence the activity of the dorsal striatum and nucleus accumbens through their innervation of dopamine and thalamic neurons, which in turn converge at the same striatal levels. Here we show that cholinergic neurons in the brainstem also provide a direct innervation of the striatal complex. By the expression of fluorescent proteins in choline acetyltransferase (ChAT)::Cre(+) transgenic rats, we selectively labeled cholinergic neurons in the rostral PPN, caudal PPN, and LDT. We show that cholinergic neurons topographically innervate wide areas of the striatal complex: rostral PPN preferentially innervates the dorsolateral striatum, and LDT preferentially innervates the medial striatum and nucleus accumbens core in which they principally form asymmetric synapses. Retrograde labeling combined with immunohistochemistry in wild-type rats confirmed the topography and cholinergic nature of the projection. Furthermore, transynaptic gene activation and conventional double retrograde labeling suggest that LDT neurons that innervate the nucleus accumbens also send collaterals to the thalamus and the dopaminergic midbrain, thus providing both direct and indirect projections, to the striatal complex. The differential activity of cholinergic interneurons and cholinergic neurons of the brainstem during reward-related paradigms suggest that the two systems play different but complementary roles in the processing of information in the striatum.


Asunto(s)
Acetilcolina/metabolismo , Vías Aferentes/fisiología , Tronco Encefálico/fisiología , Cuerpo Estriado/metabolismo , Neuronas/metabolismo , Núcleo Accumbens/metabolismo , Animales , Channelrhodopsins , Toxina del Cólera/metabolismo , Colina O-Acetiltransferasa/genética , Colina O-Acetiltransferasa/metabolismo , Cuerpo Estriado/citología , Cuerpo Estriado/ultraestructura , Femenino , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Neuronas/ultraestructura , Núcleo Accumbens/citología , Núcleo Accumbens/ultraestructura , Ratas , Ratas Long-Evans , Ratas Transgénicas , Sinapsis/metabolismo , Sinapsis/ultraestructura , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo , Aglutininas del Germen de Trigo/metabolismo
8.
Epilepsia ; 56(12): e198-202, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26530287

RESUMEN

Focal temporal lobe seizures often cause impaired cortical function and loss of consciousness. Recent work suggests that the mechanism for depressed cortical function during focal seizures may depend on decreased subcortical cholinergic arousal, which leads to a sleep-like state of cortical slow-wave activity. To test this hypothesis, we sought to directly activate subcortical cholinergic neurons during focal limbic seizures to determine the effects on cortical function. Here we used an optogenetic approach to selectively stimulate cholinergic brainstem neurons in the pedunculopontine tegmental nucleus during focal limbic seizures induced in a lightly anesthetized rat model. We found an increase in cortical gamma activity and a decrease in delta activity in response to cholinergic stimulation. These findings support the mechanistic role of reduced subcortical cholinergic arousal in causing cortical dysfunction during seizures. Through further work, electrical or optogenetic stimulation of subcortical arousal networks may ultimately lead to new treatments aimed at preventing cortical dysfunction during seizures.


Asunto(s)
Tronco Encefálico/fisiopatología , Corteza Cerebral/fisiopatología , Neuronas Colinérgicas/fisiología , Lóbulo Límbico/fisiopatología , Optogenética/métodos , Convulsiones/fisiopatología , Animales , Channelrhodopsins , Modelos Animales de Enfermedad , Femenino , Masculino , Núcleo Tegmental Pedunculopontino/fisiopatología , Estimulación Luminosa , Ratas , Ratas Long-Evans
9.
bioRxiv ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38496674

RESUMEN

Although hippocampal place cells replay nonlocal trajectories, the computational function of these events remains controversial. One hypothesis, formalized in a prominent reinforcement learning account, holds that replay plans routes to current goals. However, recent puzzling data appear to contradict this perspective by showing that replayed destinations lag current goals. These results may support an alternative hypothesis that replay updates route information to build a "cognitive map." Yet no similar theory exists to formalize this view, and it is unclear how such a map is represented or what role replay plays in computing it. We address these gaps by introducing a theory of replay that learns a map of routes to candidate goals, before reward is available or when its location may change. Our work extends the planning account to capture a general map-building function for replay, reconciling it with data, and revealing an unexpected relationship between the seemingly distinct hypotheses.

10.
Nat Neurosci ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961229

RESUMEN

The hypothesis that midbrain dopamine (DA) neurons broadcast a reward prediction error (RPE) is among the great successes of computational neuroscience. However, recent results contradict a core aspect of this theory: specifically that the neurons convey a scalar, homogeneous signal. While the predominant family of extensions to the RPE model replicates the classic model in multiple parallel circuits, we argue that these models are ill suited to explain reports of heterogeneity in task variable encoding across DA neurons. Instead, we introduce a complementary 'feature-specific RPE' model, positing that individual ventral tegmental area DA neurons report RPEs for different aspects of an animal's moment-to-moment situation. Further, we show how our framework can be extended to explain patterns of heterogeneity in action responses reported among substantia nigra pars compacta DA neurons. This theory reconciles new observations of DA heterogeneity with classic ideas about RPE coding while also providing a new perspective of how the brain performs reinforcement learning in high-dimensional environments.

11.
Nat Neurosci ; 27(4): 702-715, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38347201

RESUMEN

Social behaviors often consist of a motivational phase followed by action. Here we show that neurons in the ventromedial hypothalamus ventrolateral area (VMHvl) of mice encode the temporal sequence of aggressive motivation to action. The VMHvl receives local inhibitory input (VMHvl shell) and long-range input from the medial preoptic area (MPO) with functional coupling to neurons with specific temporal profiles. Encoding models reveal that during aggression, VMHvl shellvgat+ activity peaks at the start of an attack, whereas activity from the MPO-VMHvlvgat+ input peaks at specific interaction endpoints. Activation of the MPO-VMHvlvgat+ input promotes and prolongs a low motivation state, whereas activation of VMHvl shellvgat+ results in action-related deficits, acutely terminating attack. Moreover, stimulation of MPO-VMHvlvgat+ input is positively valenced and anxiolytic. Together, these data demonstrate how distinct inhibitory inputs to the hypothalamus can independently gate the motivational and action phases of aggression through a single locus of control.


Asunto(s)
Agresión , Motivación , Ratones , Animales , Agresión/fisiología , Conducta Social , Hipotálamo/fisiología , Neuronas/fisiología
12.
bioRxiv ; 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-37873112

RESUMEN

Animals learn the value of foods based on their postingestive effects and thereby develop aversions to foods that are toxic1-6 and preferences to those that are nutritious7-14. However, it remains unclear how the brain is able to assign credit to flavors experienced during a meal with postingestive feedback signals that can arise after a substantial delay. Here, we reveal an unexpected role for postingestive reactivation of neural flavor representations in this temporal credit assignment process. To begin, we leverage the fact that mice learn to associate novel15-18, but not familiar, flavors with delayed gastric malaise signals to investigate how the brain represents flavors that support aversive postingestive learning. Surveying cellular resolution brainwide activation patterns reveals that a network of amygdala regions is unique in being preferentially activated by novel flavors across every stage of the learning process: the initial meal, delayed malaise, and memory retrieval. By combining high-density recordings in the amygdala with optogenetic stimulation of genetically defined hindbrain malaise cells, we find that postingestive malaise signals potently and specifically reactivate amygdalar novel flavor representations from a recent meal. The degree of malaise-driven reactivation of individual neurons predicts strengthening of flavor responses upon memory retrieval, leading to stabilization of the population-level representation of the recently consumed flavor. In contrast, meals without postingestive consequences degrade neural flavor representations as flavors become familiar and safe. Thus, our findings demonstrate that interoceptive reactivation of amygdalar flavor representations provides a neural mechanism to resolve the temporal credit assignment problem inherent to postingestive learning.

13.
Neuron ; 111(22): 3541-3553.e8, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37657441

RESUMEN

Dopamine neurons of the ventral tegmental area (VTADA) respond to food and social stimuli and contribute to both forms of motivation. However, it is unclear whether the same or different VTADA neurons encode these different stimuli. To address this question, we performed two-photon calcium imaging in mice presented with food and conspecifics and found statistically significant overlap in the populations responsive to both stimuli. Both hunger and opposite-sex social experience further increased the proportion of neurons that respond to both stimuli, implying that increasing motivation for one stimulus increases overlap. In addition, single-nucleus RNA sequencing revealed significant co-expression of feeding- and social-hormone-related genes in individual VTADA neurons. Taken together, our functional and transcriptional data suggest overlapping VTADA populations underlie food and social motivation.


Asunto(s)
Neuronas Dopaminérgicas , Área Tegmental Ventral , Ratones , Animales , Neuronas Dopaminérgicas/fisiología , Alimentos , Motivación
14.
bioRxiv ; 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37293057

RESUMEN

Dopamine neurons of the ventral tegmental area (VTA DA ) respond to food and social stimuli and contribute to both forms of motivation. However, it is unclear if the same or different VTA DA neurons encode these different stimuli. To address this question, we performed 2-photon calcium imaging in mice presented with food and conspecifics, and found statistically significant overlap in the populations responsive to both stimuli. Both hunger and opposite-sex social experience further increased the proportion of neurons that respond to both stimuli, implying that modifying motivation for one stimulus affects responses to both stimuli. In addition, single-nucleus RNA sequencing revealed significant co-expression of feeding- and social-hormone related genes in individual VTA DA neurons. Taken together, our functional and transcriptional data suggest overlapping VTA DA populations underlie food and social motivation.

15.
Nat Neurosci ; 26(2): 274-284, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36646878

RESUMEN

While there is emerging evidence of sex differences in decision-making behavior, the neural substrates that underlie such differences remain largely unknown. Here we demonstrate that in mice performing a value-based decision-making task, while choices are similar between the sexes, motivation to engage in the task is modulated by action value more strongly in females than in males. Inhibition of activity in anterior cingulate cortex (ACC) neurons that project to the dorsomedial striatum (DMS) preferentially disrupts this relationship between value and motivation in females, without affecting choice in either sex. In line with these effects, in females compared to males, ACC-DMS neurons have stronger representations of negative outcomes and more neurons are active when the value of the chosen option is low. By contrast, the representation of each choice is similar between the sexes. Thus, we identify a neural substrate that contributes to sex-specific modulation of motivation by value.


Asunto(s)
Motivación , Neuronas , Masculino , Ratones , Femenino , Animales , Neuronas/fisiología , Caracteres Sexuales , Cuerpo Estriado/fisiología , Neostriado , Recompensa , Toma de Decisiones/fisiología , Conducta de Elección/fisiología
16.
bioRxiv ; 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38234715

RESUMEN

Decision making is traditionally thought to be mediated by populations of neurons whose firing rates persistently accumulate evidence across time. However, recent decision-making experiments in rodents have observed neurons across the brain that fire sequentially as a function of spatial position or time, rather than persistently, with the subset of neurons in the sequence depending on the animal's choice. We develop two new candidate circuit models, in which evidence is encoded either in the relative firing rates of two competing chains of neurons or in the network location of a stereotyped pattern ("bump") of neural activity. Encoded evidence is then faithfully transferred between neuronal populations representing different positions or times. Neural recordings from four different brain regions during a decision-making task showed that, during the evidence accumulation period, different brain regions displayed tuning curves consistent with different candidate models for evidence accumulation. This work provides mechanistic models and potential neural substrates for how graded-value information may be precisely accumulated within and transferred between neural populations, a set of computations fundamental to many cognitive operations.

17.
Cell Rep ; 39(9): 110874, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35649378

RESUMEN

Cholinergic interneurons (ChINs) in the nucleus accumbens (NAc) have been implicated in the extinction of drug associations, as well as related plasticity in medium spiny neurons (MSNs). However, since most previous work relied on artificial manipulations, whether endogenous acetylcholine signaling relates to drug associations is unclear. Moreover, despite great interest in the opposing effects of dopamine on MSN subtypes, whether ChIN-mediated effects vary by MSN subtype is also unclear. Here, we find that high endogenous acetylcholine event frequency correlates with greater extinction of cocaine-context associations across male mice. Additionally, extinction is associated with a weakening of glutamatergic synapses across MSN subtypes. Manipulating ChIN activity bidirectionally controls both the rate of extinction and the associated plasticity at MSNs. Our findings indicate that NAc ChINs mediate drug-context extinction by reducing glutamatergic synaptic strength across MSN subtypes, and that natural variation in acetylcholine signaling may contribute to individual differences in extinction.


Asunto(s)
Cocaína , Acetilcolina , Animales , Colinérgicos/farmacología , Cocaína/farmacología , Interneuronas , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología
18.
Cell Rep ; 39(7): 110756, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35584665

RESUMEN

How are actions linked with subsequent outcomes to guide choices? The nucleus accumbens, which is implicated in this process, receives glutamatergic inputs from the prelimbic cortex and midline regions of the thalamus. However, little is known about whether and how representations differ across these input pathways. By comparing these inputs during a reinforcement learning task in mice, we discovered that prelimbic cortical inputs preferentially represent actions and choices, whereas midline thalamic inputs preferentially represent cues. Choice-selective activity in the prelimbic cortical inputs is organized in sequences that persist beyond the outcome. Through computational modeling, we demonstrate that these sequences can support the neural implementation of reinforcement-learning algorithms, in both a circuit model based on synaptic plasticity and one based on neural dynamics. Finally, we test and confirm a prediction of our circuit models by direct manipulation of nucleus accumbens input neurons.


Asunto(s)
Núcleo Accumbens , Tálamo , Animales , Ratones , Vías Nerviosas/fisiología , Neuronas/fisiología , Núcleo Accumbens/fisiología , Refuerzo en Psicología , Tálamo/fisiología
20.
Biol Psychiatry Glob Open Sci ; 2(4): 460-469, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36324654

RESUMEN

Background: Excessive repetitive behavior is a debilitating symptom of several neuropsychiatric disorders. Parvalbumin-positive inhibitory interneurons in the dorsal striatum have been linked to repetitive behavior, and a sizable portion of these cells are surrounded by perineuronal nets (PNNs), specialized extracellular matrix structures. Although PNNs have been associated with plasticity and neuropsychiatric disease, no previous studies have investigated their involvement in excessive repetitive behavior. Methods: We used histochemistry and confocal imaging to investigate PNNs surrounding parvalbumin-positive cells in the dorsal striatum of 4 mouse models of excessive repetitive behavior (BTBR, Cntnap2, Shank3, prenatal valproate treatment). We then investigated one of these models, the BTBR mouse, in detail, with DiI labeling, in vivo and in vitro recordings, and behavioral analyses. We next degraded PNNs in the dorsomedial striatum (DMS) using the enzyme chondroitinase ABC and assessed dendritic spine density, electrophysiology, and repetitive behavior. Results: We found a greater percentage of parvalbumin-positive interneurons with PNNs in the DMS of all 4 mouse models of excessive repetitive behavior compared with control mice. In BTBR mice, we found fewer dendritic spines on medium spiny neurons (targets of parvalbumin-positive interneurons) and differences in neuronal oscillations as well as inhibitory postsynaptic potentials compared with control mice. Reduction of DMS PNNs in BTBR mice altered dendritic spine density and inhibitory responses and normalized repetitive behavior. Conclusions: These findings suggest that cellular abnormalities in the DMS are associated with maladaptive repetitive behaviors and that manipulating PNNs can restore normal levels of repetitive behavior while altering DMS dendritic spines and inhibitory signaling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA