Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nucleic Acids Res ; 32(11): 3435-45, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15226410

RESUMEN

Basic region-leucine zipper (B-ZIP) proteins are a class of dimeric sequence-specific DNA-binding proteins unique to eukaryotes. We have identified 67 B-ZIP proteins in the Arabidopsis thaliana genome. No A.thaliana B-ZIP domains are homologous with any Homo sapiens B-ZIP domains. Here, we predict the dimerization specificity properties of the 67 B-ZIP proteins in the A.thaliana genome based on three structural properties of the dimeric alpha-helical leucine zipper coiled coil structure: (i) length of the leucine zipper, (ii) placement of asparagine or a charged amino acid in the hydrophobic interface and (iii) presence of interhelical electrostatic interactions. Many A.thaliana B-ZIP leucine zippers are predicted to be eight or more heptads in length, in contrast to the four or five heptads typically found in H.sapiens, a prediction experimentally verified by circular dichroism analysis. Asparagine in the a position of the coiled coil is typically observed in the second heptad in H.sapiens. In A.thaliana, asparagine is abundant in the a position of both the second and fifth heptads. The particular placement of asparagine in the a position helps define 14 families of homodimerizing B-ZIP proteins in A.thaliana, in contrast to the six families found in H.sapiens. The repulsive interhelical electrostatic interactions that are used to specify heterodimerizing B-ZIP proteins in H.sapiens are not present in A.thaliana. Instead, we predict that plant leucine zippers rely on charged amino acids in the a position to drive heterodimerization. It appears that A.thaliana define many families of homodimerizing B-ZIP proteins by having long leucine zippers with asparagine judiciously placed in the a position of different heptads.


Asunto(s)
Arabidopsis/genética , Proteínas de Unión al ADN/química , Proteínas de Plantas/química , Factores de Transcripción/química , Secuencia de Aminoácidos , Asparagina/análisis , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dimerización , Genoma Humano , Genoma de Planta , Humanos , Leucina Zippers , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alineación de Secuencia , Análisis de Secuencia de Proteína , Electricidad Estática , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Plant Cell ; 16(7): 1717-29, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15208401

RESUMEN

Sugars have been shown to regulate transcription of numerous genes in plants. Sucrose controls translation of the group S basic region leucine zipper (bZIP)-type transcription factor ATB2/AtbZIP11 (Rook et al., 1998a). This control requires the unusually long 5' untranslated region (UTR) of the gene. Point mutations and deletions of the 5'UTR have uncovered the sequences involved. A highly conserved upstream open reading frame (uORF) coding for 42 amino acids is essential for the repression mechanism. It is conserved in 5'UTRs of bZIP transcription factors from other Arabidopsis thaliana genes and many other plants. ATB2/AtbZIP11 is normally expressed in association with vascular tissues. Ectopic expression of a 5'UTR construct shows that the sucrose repression system is functional in all tissues. AtbZIP2 is another Arabidopsis bZIP transcription factor gene harboring the conserved uORF, which is regulated similarly via sucrose-induced repression of translation. This suggests a general function of the conserved uORF in sucrose-controlled regulation of expression. Our findings imply the operation of a sucrose-sensing pathway that controls translation of several plant bZIP transcription factor genes harboring the conserved uORF in their 5'UTRs. Target genes of such transcription factors will then be regulated in sucrose-dependent way.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Biosíntesis de Proteínas , Sacarosa/farmacología , Regiones no Traducidas 5'/genética , Secuencia de Aminoácidos , Secuencia Conservada , Marcadores Genéticos , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Plantas Modificadas Genéticamente , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción/metabolismo , Transformación Genética
3.
Plant Physiol ; 135(2): 879-90, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15181209

RESUMEN

Trehalose-6-phosphate (T6P) is required for carbon utilization during Arabidopsis development, and its absence is embryo lethal. Here we show that T6P accumulation inhibits seedling growth. Wild-type seedlings grown on 100 mm trehalose rapidly accumulate T6P and stop growing, but seedlings expressing Escherichia coli trehalose phosphate hydrolase develop normally on such medium. T6P accumulation likely results from much-reduced T6P dephosphorylation when trehalose levels are high. Metabolizable sugars added to trehalose medium rescue T6P inhibition of growth. In addition, Suc feeding leads to a progressive increase in T6P concentrations, suggesting that T6P control over carbon utilization is related to available carbon for growth. Expression analysis of genes from the Arabidopsis trehalose metabolism further supports this: Suc rapidly induces expression of trehalose phosphate synthase homolog AtTPS5 to high levels. In contrast, T6P accumulation after feeding trehalose in the absence of available carbon induces repression of genes encoding T6P synthases and expression of T6P phosphatases. To identify processes controlled by T6P, we clustered expression profile data from seedlings with altered T6P content. T6P levels correlate with expression of a specific set of genes, including the S6 ribosomal kinase ATPK19, independently of carbon status. Interestingly, Suc addition represses 15 of these genes, one of which is AtKIN11, encoding a Sucrose Non Fermenting 1 (SNF1)-related kinase known to play a role in Suc utilization.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Glucosiltransferasas/genética , Brotes de la Planta/crecimiento & desarrollo , Fosfatos de Azúcar/biosíntesis , Trehalosa/análogos & derivados , Trehalosa/biosíntesis , Trehalosa/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Disacaridasas/genética , Disacaridasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glucosiltransferasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/genética , Sacarosa/farmacología , Transcripción Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA