Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Mol Sci ; 21(15)2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32718059

RESUMEN

DNA mismatch repair-deficient colorectal cancers (CRCs) accumulate numerous frameshift mutations at repetitive sequences recognized as microsatellite instability (MSI). When coding mononucleotide repeats (cMNRs) are affected, tumors accumulate frameshift mutations and premature termination codons (PTC) potentially leading to truncated proteins. Nonsense-mediated RNA decay (NMD) can degrade PTC-containing transcripts and protect from such faulty proteins. As it also regulates normal transcripts and cellular physiology, we tested whether NMD genes themselves are targets of MSI frameshift mutations. A high frequency of cMNR frameshift mutations in the UPF3A gene was found in MSI CRC cell lines (67.7%), MSI colorectal adenomas (55%) and carcinomas (63%). In normal colonic crypts, UPF3A expression was restricted to single chromogranin A-positive cells. SILAC-based proteomic analysis of KM12 CRC cells revealed UPF3A-dependent down-regulation of several enzymes involved in cholesterol biosynthesis. Furthermore, reconstituted UPF3A expression caused alterations of 85 phosphosites in 52 phosphoproteins. Most of them (38/52, 73%) reside in nuclear phosphoproteins involved in regulation of gene expression and RNA splicing. Since UPF3A mutations can modulate the (phospho)proteomic signature and expression of enzymes involved in cholesterol metabolism in CRC cells, UPF3A may influence other processes than NMD and loss of UPF3A expression might provide a growth advantage to MSI CRC cells.


Asunto(s)
Neoplasias Colorrectales , Mutación del Sistema de Lectura , Inestabilidad Genómica , Repeticiones de Microsatélite , Proteínas de Neoplasias , Degradación de ARNm Mediada por Codón sin Sentido , Fosfoproteínas , Proteínas de Unión al ARN , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Perfilación de la Expresión Génica , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteómica , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
2.
Mol Carcinog ; 54(11): 1376-86, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25213383

RESUMEN

Different DNA mismatch repair (MMR)-deficient mouse strains have been developed as models for the inherited cancer predisposing Lynch syndrome. It is completely unresolved, whether coding mononucleotide repeat (cMNR) gene mutations in these mice can contribute to intestinal tumorigenesis and whether MMR-deficient mice are a suitable molecular model of human microsatellite instability (MSI)-associated intestinal tumorigenesis. A proof-of-principle study was performed to identify mouse cMNR-harboring genes affected by insertion/deletion mutations in MSI murine intestinal tumors. Bioinformatic algorithms were developed to establish a database of mouse cMNR-harboring genes. A panel of five mouse noncoding mononucleotide markers was used for MSI classification of intestinal matched normal/tumor tissues from MMR-deficient (Mlh1(-/-) , Msh2(-/-) , Msh2(LoxP/LoxP) ) mice. cMNR frameshift mutations of candidate genes were determined by DNA fragment analysis. Murine MSI intestinal tumors but not normal tissues from MMR-deficient mice showed cMNR frameshift mutations in six candidate genes (Elavl3, Tmem107, Glis2, Sdccag1, Senp6, Rfc3). cMNRs of mouse Rfc3 and Elavl3 are conserved in type and length in their human orthologs that are known to be mutated in human MSI colorectal, endometrial and gastric cancer. We provide evidence for the utility of a mononucleotide marker panel for detection of MSI in murine tumors, the existence of cMNR instability in MSI murine tumors, the utility of mouse subspecies DNA for identification of polymorphic repeats, and repeat conservation among some orthologous human/mouse genes, two of them showing instability in human and mouse MSI intestinal tumors. MMR-deficient mice hence are a useful molecular model system for analyzing MSI intestinal carcinogenesis.


Asunto(s)
Disparidad de Par Base/genética , Reparación de la Incompatibilidad de ADN/genética , Mutación del Sistema de Lectura/genética , Neoplasias Intestinales/genética , Repeticiones de Microsatélite/genética , Animales , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Proteínas de Unión al ADN , Humanos , Ratones , Inestabilidad de Microsatélites
3.
Int J Cancer ; 132(8): 1790-9, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23002058

RESUMEN

Brush border Myosin Ia (MYO1A) has been shown to be frequently mutated in colorectal tumors with microsatellite instability (MSI) and to have tumor suppressor activity in intestinal tumors. Here, we investigated the frequency of frameshift mutations in the A8 microsatellite in exon 28 of MYO1A in MSI gastric and endometrial tumors and found a high mutation rate in gastric (22/47; 46.8%) but not endometrial (3/48; 6.2%) tumors. Using a regression model, we show that MYO1A mutations are likely to confer a growth advantage to gastric, but not endometrial tumors. The mutant MYO1A(7A) protein was shown to lose its membrane localization in gastric cancer cells and a cycloheximide-chase assay demonstrated that the mutant MYO1A(7A) protein has reduced stability compared to the wild type MYO1A. Frequent MYO1A promoter hypermethylation was also found in gastric tumors. Promoter methylation negatively correlates with MYO1A mRNA expression in a series of 58 non-MSI gastric primary tumors (Pearson's r = -0.46; p = 0.0003) but not in a cohort of 54 non-MSI endometrial tumors and treatment of gastric cancer cells showing high MYO1A promoter methylation with the demethylating agent 5-aza-2'-deoxycytidine, resulted in a significant increase of MYO1A mRNA levels. We found that normal gastric epithelial cells, but not normal endometrial cells, express high levels of MYO1A. Therefore, when considered together, our findings suggest that MYO1A has tumor suppressor activity in the normal gastric epithelium but not in the normal endometrium and inactivation of MYO1A either genetically or epigenetically may confer gastric epithelial cells a growth advantage.


Asunto(s)
Neoplasias Endometriales/genética , Microvellosidades/metabolismo , Cadenas Pesadas de Miosina/genética , Miosina Tipo I/genética , Neoplasias Gástricas/genética , Azacitidina/análogos & derivados , Azacitidina/farmacología , Secuencia de Bases , Western Blotting , Metilación de ADN , Cartilla de ADN , Decitabina , Neoplasias Endometriales/patología , Femenino , Humanos , Microscopía Confocal , Mutación , Regiones Promotoras Genéticas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neoplasias Gástricas/patología
4.
Nucleic Acids Res ; 38(Database issue): D682-9, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19820113

RESUMEN

About 15% of human colorectal cancers and, at varying degrees, other tumor entities as well as nearly all tumors related to Lynch syndrome are hallmarked by microsatellite instability (MSI) as a result of a defective mismatch repair system. The functional impact of resulting mutations depends on their genomic localization. Alterations within coding mononucleotide repeat tracts (MNRs) can lead to protein truncation and formation of neopeptides, whereas alterations within untranslated MNRs can alter transcription level or transcript stability. These mutations may provide selective advantage or disadvantage to affected cells. They may further concern the biology of microsatellite unstable cells, e.g. by generating immunogenic peptides induced by frameshifts mutations. The Selective Targets database (http://www.seltarbase.org) is a curated database of a growing number of public MNR mutation data in microsatellite unstable human tumors. Regression calculations for various MSI-H tumor entities indicating statistically deviant mutation frequencies predict TGFBR2, BAX, ACVR2A and others that are shown or highly suspected to be involved in MSI tumorigenesis. Many useful tools for further analyzing genomic DNA, derived wild-type and mutated cDNAs and peptides are integrated. A comprehensive database of all human coding, untranslated, non-coding RNA- and intronic MNRs (MNR_ensembl) is also included. Herewith, SelTarbase presents as a plenty instrument for MSI-carcinogenesis-related research, diagnostics and therapy.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Bases de Datos de Ácidos Nucleicos , Sistema Inmunológico/metabolismo , Repeticiones de Microsatélite/genética , Mutación , Neoplasias/genética , Secuencia de Aminoácidos , Secuencia de Bases , Biología Computacional/tendencias , Reparación del ADN , Humanos , Almacenamiento y Recuperación de la Información/métodos , Internet , Inestabilidad de Microsatélites , Datos de Secuencia Molecular , Programas Informáticos
5.
BMC Cancer ; 8: 329, 2008 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-19000305

RESUMEN

BACKGROUND: Protein tyrosine phosphatases (PTPs) like their antagonizing protein tyrosine kinases are key regulators of signal transduction thereby assuring normal control of cellular growth and differentiation. Increasing evidence suggests that mutations in PTP genes are associated with human malignancies. For example, mutational analysis of the tyrosine phosphatase (PTP) gene superfamily uncovered genetic alterations in about 26% of colorectal tumors. Since in these studies tumors have not been stratified according to genetic instability status we hypothesized that colorectal tumors characterized by high-level of microsatellite instability (MSI-H) might show an increased frequency of frameshift mutations in those PTP genes that harbor long mononucleotide repeats in their coding region (cMNR). RESULTS: Using bioinformatic analysis we identified 16 PTP candidate genes with long cMNRs that were examined for genetic alterations in 19 MSI-H colon cell lines, 54 MSI-H colorectal cancers, and 17 MSI-H colorectal adenomas. Frameshift mutations were identified only in 6 PTP genes, of which PTPN21 show the highest mutation frequency at all in MSI-H tumors (17%). CONCLUSION: Although about 32% of MSI-H tumors showed at least one affected PTP gene, and cMNR mutation rates in PTPN21, PTPRS, and PTPN5 are higher than the mean mutation frequency of MNRs of the same length, mutations within PTP genes do not seem to play a common role in MSI tumorigenesis, since no cMNR mutation frequency reached statistical significance and therefore, failed prediction as a Positive Selective Target Gene.


Asunto(s)
Transformación Celular Neoplásica/genética , Neoplasias Colorrectales/genética , Inestabilidad de Microsatélites , Proteínas Tirosina Fosfatasas/genética , Línea Celular , Neoplasias Colorrectales/patología , Biología Computacional , Análisis Mutacional de ADN , Mutación del Sistema de Lectura , Humanos , Repeticiones de Microsatélite , Sistemas de Lectura Abierta , Proteínas Tirosina Fosfatasas/química
6.
Cancer Res ; 65(14): 6418-24, 2005 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-16024646

RESUMEN

In colorectal cancer, the immune response is particularly pronounced against tumors displaying the high microsatellite instability (MSI-H) phenotype. MSI-H tumors accumulate mutations affecting microsatellites located within protein encoding regions (coding microsatellites, cMS), which lead to translational shifts of the respective reading frames. Consequently, novel tumor-specific frameshift-derived neopeptides (FSP) are generated and presented by MSI-H tumor cells, thus eliciting effective cytotoxic immune responses. To analyze whether the immunoselective pressure was reflected by the phenotype of MSI-H colorectal cancer cells, we compared here the expression of antigen processing machinery (APM) components and human leukocyte antigen (HLA) class I antigen subunits in 20 MSI-H and 20 microsatellite-stable (MSS) colorectal cancer using a panel of newly developed APM component-specific monoclonal antibodies. In addition, we did a systematic analysis of mutations at cMS located within APM genes and beta2-microglobulin (beta2m). Total HLA class I antigen loss was observed in 12 (60.0%) of the 20 MSI-H lesions compared with only 6 (30.0%) of the 20 MSS colorectal cancer lesions. Moreover, total loss of membraneous HLA-A staining was significantly more frequent in MSI-H colorectal cancer (P = 0.0024). Mutations at cMS of beta2m and genes encoding APM components (TAP1 and TAP2) were detected in at least 7 (35.0%) of 20 MSI-H colorectal cancers but in none of the MSS colorectal cancers (P = 0.0002). These data show that defects of HLA class I antigen processing and presentation seem to be significantly more frequent in MSI-H than in MSS colorectal cancer, suggesting that in MSI-H colorectal cancer the immunoselective pressure leads to the outgrowth of cells with defects of antigen presentation.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Antígenos HLA-A/genética , Antígenos HLA-A/inmunología , Repeticiones de Microsatélite/inmunología , Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2 , Miembro 3 de la Subfamilia B de Transportadores de Casetes de Unión a ATP , Transportadoras de Casetes de Unión a ATP/inmunología , Anticuerpos Monoclonales/inmunología , Presentación de Antígeno/genética , Presentación de Antígeno/inmunología , Humanos , Inmunohistoquímica , Repeticiones de Microsatélite/genética , Microglobulina beta-2/biosíntesis , Microglobulina beta-2/genética , Microglobulina beta-2/inmunología
7.
Cancer Res ; 65(18): 8072-8, 2005 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16166278

RESUMEN

DNA mismatch repair deficiency is observed in about 10% to 15% of all colorectal carcinomas and in up to 90% of hereditary nonpolyposis colorectal cancer (HNPCC) patients. Tumors with mismatch repair defects acquire mutations in short repetitive DNA sequences, a phenomenon termed high-level microsatellite instability (MSI-H). The diagnosis of MSI-H in colon cancer is of increasing relevance, because MSI-H is an independent prognostic factor in colorectal cancer, seems to influence the efficacy of adjuvant chemotherapy, and is the most important molecular screening tool to identify HNPCC patients. To make MSI typing feasible for the routine pathology laboratory, highly reproducible and cost effective laboratory tests are required. Here, we describe a novel T25 mononucleotide marker in the 3'untranslated region of the CASP2 gene (CAT25) that displayed a quasimonomorphic repeat pattern in normal tissue of 200 unrelated individuals of Caucasian origin. In addition, CAT25 was monomorphic also in all tested donors of African and Asian origin (n = 102 and n = 79, respectively) and thus differs from the most commonly used markers BAT25 and BAT26. Without the analysis of corresponding normal tissue, CAT25 correctly detected 56 of 57 colorectal cancer specimens classified as MSI-H by using the standard National Cancer Institute/International Collaborative Group-HNPCC marker panel. Combined with the standard markers BAT25 and BAT26 in a multiplex PCR, all MSI-H colorectal cancer samples were typed correctly. No false-positive results were obtained in 60 non-MSI-H control colorectal cancer specimens. These data suggest that CAT25 should be included into novel marker panels for microsatellite testing thus allowing for a significant reduction of the complexity and costs of MSI typing. Moreover, CAT25 represents a highly promising marker for early detection of colorectal cancer in HNPCC germ line mutation carriers.


Asunto(s)
Neoplasias Colorrectales/genética , Cisteína Endopeptidasas/genética , Repeticiones de Microsatélite/genética , Reacción en Cadena de la Polimerasa/métodos , Regiones no Traducidas 3' , Alelos , Caspasa 2 , Neoplasias Colorrectales/enzimología , Humanos , Sensibilidad y Especificidad
8.
Cancer Res ; 65(22): 10170-3, 2005 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-16288001

RESUMEN

The receptor tyrosine kinase EPHB2 has recently been shown to be a direct transcriptional target of TCF/beta-catenin. Premalignant lesions of the colon express high levels of EPHB2 but the expression of this kinase is reduced or lost in most colorectal carcinomas. In addition, inactivation of EPHB2 has been shown to accelerate tumorigenesis initiated by APC mutation in the colon and rectum. In this study, we investigated the molecular mechanisms responsible for the inactivation of EPHB2 in colorectal tumors. We show here the presence of mutations in repetitive sequences in exon 17 of EPHB2 in 6 of 29 adenomas with microsatellite instability (MSI), and 101 of 246 MSI carcinomas (21% and 41%, respectively). Moreover, we found EPHB2 promoter hypermethylation in 54 of the 101 colorectal tumors studied (53%). Importantly, EPHB2 expression was restored after treatment of EPHB2-methylated colon cancer cells with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine. In conclusion, in this study, we elucidate the molecular mechanisms of inactivation of EPHB2 and show for the first time the high incidence of frameshift mutations in MSI colorectal tumors and aberrant methylation of the regulatory sequences of this important tumor suppressor gene.


Asunto(s)
Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/genética , Silenciador del Gen , Receptor EphB2/genética , Adenoma/enzimología , Adenoma/genética , Islas de CpG , Metilación de ADN , Activación Enzimática , Exones , Mutación del Sistema de Lectura , Regulación Enzimológica de la Expresión Génica , Humanos , Repeticiones de Microsatélite/genética , Regiones Promotoras Genéticas , Receptor EphB2/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos
9.
Oncogene ; 24(15): 2525-35, 2005 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-15735733

RESUMEN

Microsatellite instability (MSI) occurs in most hereditary nonpolyposis colorectal cancers (HNPCC) and less frequently in sporadic tumors as the result of DNA mismatch repair (MMR) deficiency. Instability at coding microsatellites (cMS) in specific target genes causes frameshift mutations and functional inactivation of affected proteins, thereby providing a selective growth advantage to MMR deficient cells. At present, little is known about Selective Target Gene frameshift mutations in preneoplastic lesions. In this study, we examined 30 HNPCC-associated MSI-H colorectal adenomas of different grades of dysplasia for frameshift mutations in 26 cMS-bearing genes, which, according to our previous model, represent Selective Target genes of MSI. About 30% (8/26) of these genes showed a high mutation frequency (> or =50%) in colorectal adenomas, similar to the frequencies reported for colorectal carcinomas. Mutations in one gene (PTHL3) occurred significantly less frequently in MSI adenomas compared to published mutation rates in MSI carcinomas (36.0 vs 85.7%, P=0.023). Biallelic inactivation was observed in nine genes, thus emphasizing the functional impact of cMS instability on MSI tumorigenesis. Some genes showed a high frequency of frameshift mutations already at early stages of MSI colorectal tumorigenesis that increased with grade of dysplasia and transition to carcinoma. These include known Target Genes like BAX and TGFBR2, as well as three novel candidates, MACS, NDUFC2, and TAF1B. Overall, we have identified genes of potential relevance for the initiation and progression of MSI tumorigenesis, thus representing promising candidates for novel diagnostic and therapeutic approaches directed towards MMR-deficient tumors.


Asunto(s)
Adenoma/genética , Adenoma/fisiopatología , Transformación Celular Neoplásica/genética , Inestabilidad Cromosómica , Neoplasias del Colon/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Repeticiones de Microsatélite , Neoplasias del Colon/fisiopatología , Neoplasias Colorrectales Hereditarias sin Poliposis/complicaciones , Daño del ADN , Análisis Mutacional de ADN , Reparación del ADN , Mutación del Sistema de Lectura , Humanos , Inmunohistoquímica , Oncogenes
10.
Ther Clin Risk Manag ; 12: 1387-93, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27660456

RESUMEN

INTRODUCTION: Osteitis is one of the most serious complications in orthopedic surgery. Expert Tibia Nail (ETN) PROtect™ coated with a biodegradable layer of gentamicin-laden polymer was developed for prophylaxis of osteomyelitis. In systemic administration, gentamicin has only a small therapeutic index and serious side effects; it is potentially nephrotoxic as well as ototoxic. It is not yet known if relevant gentamicin concentrations are released into the systemic circulation after implantation of gentamicin-coated nails. In order to evaluate the patients' risks profiles and increase patient safety, we measured gentamicin levels in pre- and postoperative serum samples of patients undergoing implantation of ETN PROtect. METHODS: Twenty-five patients who received ETN PROtect between March 2012 and August 2014 were included in this study. Collection of blood samples occurred before the operation, at weeks 1-4, 3 and 6 months, and up to 1 year after the implantation. Measurement of gentamicin levels in serum samples was performed at the central laboratory of Heidelberg University Hospital. Additionally, laboratory parameters, C-reactive protein, leukocyte number, urea and creatinine concentrations were analyzed in routine controls before and after operating and assessed for systemic side effects. RESULTS: Over the course of this prospective observational study, we were able to determine that gentamicin-coated nails do not release gentamicin into the systemic circulation above the lowest detectable level of 0.2 mg/dL. There were slight increases in the mean inflammation and renal retention markers, but no gentamicin-associated side effects could be linked to implantation. Furthermore, no allergic reactions could be detected during our study. CONCLUSION: Our findings suggest that there is no relevant release of gentamicin into the systemic circulation causing a systemic effect, and serious side effects due to gentamicin-coated tibia nails should not be feared. Postoperative monitoring of renal function does not seem necessary because of the implantation of ETN PROtect.

11.
Oncogene ; 22(15): 2226-35, 2003 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-12700659

RESUMEN

DNA mismatch repair deficiency is observed in about 15% of human colorectal, gastric, and endometrial tumors and in lower frequencies in a minority of other tumors thereby causing insertion/deletion mutations at short repetitive sequences, recognized as microsatellite instability (MSI). Evolution of tumors, including those with MSI, is a continuous process of mutation and selection favoring neoplastic growth. Mutations in microsatellite-bearing genes that promote tumor cell growth in general (Real Common Target genes) are assumed to be the driving force during MSI carcinogenesis. Thus, microsatellite mutations in these genes should occur more frequently than mutations in microsatellite genes without contribution to malignancy (ByStander genes). So far, only a few Real Common Target genes have been identified by functional studies. Thus, comprehensive analysis of microsatellite mutations will provide important clues to the understanding of MSI-driven carcinogenesis. Here, we evaluated published mutation frequencies on 194 repeat tracts in 137 genes in MSI-H colorectal, endometrial, and gastric carcinomas and propose a statistical model that aims to identify Real Common Target genes. According to our model nine genes including BAX and TGFbetaRII were identified as Real Common Targets in colorectal cancer, one gene in gastric cancer, and three genes in endometrial cancer. Microsatellite mutations in five additional genes seem to be counterselected in gastrointestinal tumors. Overall, the general applicability, the capacity to unlimited data analysis, the inclusion of mutation data generated by different groups on different sets of tumors make this model a useful tool for predicting Real Common Target genes with specificity for MSI-H tumors of different organs, guiding subsequent functional studies to the most likely targets among numerous microsatellite harboring genes.


Asunto(s)
Disparidad de Par Base , Transformación Celular Neoplásica/genética , Reparación del ADN , Genes , Repeticiones de Microsatélite , Neoplasias/genética , Disparidad de Par Base/genética , Neoplasias Colorrectales/genética , Análisis Mutacional de ADN , Reparación del ADN/genética , ADN Complementario/genética , ADN de Neoplasias/genética , Neoplasias Endometriales/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Modelos Genéticos , Mutación , Análisis de Regresión , Neoplasias Gástricas/genética
12.
Cancer Res ; 69(1): 292-9, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19118014

RESUMEN

Glycosyl epitopes have been identified as tumor-specific markers in colorectal tumors and various lines of evidence indicate the significance of altered synthesis, transport, and secretion of glycoproteins in tumorigenesis. However, aberrant glycosylation has been largely ignored in microsatellite unstable (MSI-H) colorectal tumors. Therefore, we analyzed mutation frequencies of genes of the cellular glycosylation machinery in MSI-H tumors, focusing on frameshift mutations in coding MNRs (cMNRs). Among 28 candidate genes, LMAN1/ERGIC53, a mannose-specific lectin mediating endoplasmatic reticulum (ER)-to-Golgi transit of glycosylated proteins, showed high mutation frequency in MSI-H colorectal cancer cell lines (52%; 12 of 23), carcinomas (45%; 72 of 161), and adenomas (40%; 8 of 20). Biallelic mutations were observed in 17% (4 of 23) of MSI-H colorectal cancer cell lines. LMAN1 was found to be transcribed but truncated protein remained undetectable in these LMAN1-mutant cell lines. Immunohistochemical and molecular analysis of LMAN1-mutated carcinomas and adenomas revealed regional loss of LMAN1 expression due to biallelic LMAN1 cMNR frameshift mutations. In LMAN1-deficient colorectal cancer cell lines, secretion of the LMAN1 client protein alpha-1-antitrypsin (A1AT), an inhibitor of angiogenesis and tumor growth, was significantly impaired but could be restored upon LMAN1 re-expression. These results suggest that LMAN1 mutational inactivation is a frequent and early event potentially contributing to MSI-H tumorigenesis.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Lectinas de Unión a Manosa/genética , Proteínas de la Membrana/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/metabolismo , Mutación del Sistema de Lectura , Expresión Génica , Humanos , Lectinas de Unión a Manosa/biosíntesis , Proteínas de la Membrana/biosíntesis , Inestabilidad de Microsatélites , ARN Mensajero/genética , alfa 1-Antitripsina/metabolismo
13.
Genes Chromosomes Cancer ; 46(12): 1080-9, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17726700

RESUMEN

Mismatch repair (MMR) deficiency is a major mechanism of colorectal tumorigenesis that is observed in 10-15% of sporadic colorectal cancers and those associated with the hereditary nonpolyposis colorectal cancer (HNPCC) syndrome. MMR deficiency leads to the accumulation of mutations mainly at short repetitive sequences termed microsatellites, constituting the high level microsatellite instability (MSI-H) phenotype. In recent years, several genes have been described that harbor microsatellites in their coding region (coding microsatellites, cMS) and are frequently affected by mutations in MMR-deficient cancers. However, evidence for a functional role of most of the known cMS-containing genes is missing, and further analyses are needed for a better understanding of MSI tumorigenesis. Here, we examined in detail alterations of the absent in melanoma 2 (AIM2) gene that shows a high frequency of cMS frameshift mutations in MSI-H colorectal, gastric, and endometrial tumors. AIM2 belongs to the HIN-200 family of interferon (IFN)-inducible proteins, its role in colon carcinogenesis, however, is unknown. Sequencing of the entire coding region of AIM2 revealed a high frequency of frameshift and missense mutations in primary MSI-H colon cancers (9/20) and cell lines (9/15). Biallelic AIM2 alterations were detected in 8 MSI-H colon tumors and cell lines. In addition, AIM2 promoter hypermethylation conferred insensitivity to IFN-gamma-induced AIM2 expression of three MSI-H colon cancer cell lines. These results demonstrate that inactivation of AIM2 by genetic and epigenetic mechanisms is frequent in MMR-deficient colorectal cancers, thus suggesting that AIM2 is a mutational target relevant for the progression of MSI-H colorectal cancers.


Asunto(s)
Neoplasias del Colon/genética , Genes Supresores de Tumor , Inestabilidad de Microsatélites , Proteínas Nucleares/genética , Línea Celular Tumoral , Neoplasias del Colon/metabolismo , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Islas de CpG , Metilación de ADN , Proteínas de Unión al ADN , Humanos , Interferón gamma/genética , Interferón gamma/metabolismo , Repeticiones de Microsatélite , Mutación , Regiones Promotoras Genéticas
14.
Cancer Biomark ; 2(1-2): 69-86, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17192061

RESUMEN

Microsatellites are highly abundant short repetitive sequences found in the genomes across different species. They have gained increasing interest in recent years because length alterations in several coding as well as non-coding microsatellites are associated with a variety of different disorders. Particularly, microsatellite mutations play an important role in tumorigenesis of DNA mismatch repair deficient tumors that account for up to a 15% of colorectal, endometrial, and various other cancers. The systematic analysis of the distribution and function of affected microsatellite sequences has facilitated to unravel important steps in the selection processes that drive tumorigenesis. Here, we review the role of microsatellite mutations in the development of cancers with DNA mismatch repair deficiency, outlining biostatistical approaches for the identification of MSI target genes with relevance to MSI associated carcinogenesis. Knowledge about the biological impact of microsatellite mutations in these genes will potentially help to develop modified clinical concepts for diagnosis, prevention, and treatment of microsatellite unstable human cancers.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/metabolismo , Reparación de la Incompatibilidad de ADN , Inestabilidad de Microsatélites , Repeticiones de Microsatélite/genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA