Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
FASEB J ; 37(1): e22717, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563024

RESUMEN

Bone morphogenetic proteins (BMP) are powerful regulators of cellular processes such as proliferation, differentiation, and apoptosis. However, the specific molecular requirements controlling the bioavailability of BMPs in the extracellular matrix (ECM) are not yet fully understood. Our previous work showed that BMPs are targeted to the ECM as growth factor-prodomain (GF-PD) complexes (CPLXs) via specific interactions of their PDs. We showed that BMP-7 PD binding to the extracellular microfibril component fibrillin-1 renders the CPLXs from an open, bioactive V-shape into a closed, latent ring shape. Here, we show that specific PD interactions with heparin/heparan sulfate glycosaminoglycans (GAGs) allow to target and spatially concentrate BMP-7 and BMP-9 CPLXs in bioactive V-shape conformation. However, targeting to GAGs may be BMP specific, since BMP-10 GF and CPLX do not interact with heparin. Bioactivity assays on solid phase in combination with interaction studies showed that the BMP-7 PD protects the BMP-7 GF from inactivation by heparin. By using transmission electron microscopy, molecular docking, and site-directed mutagenesis, we determined the BMP-7 PD-binding site for heparin. Further, fine-mapping of the fibrillin-1-binding site within the BMP-7 PD and molecular modeling showed that both binding sites are mutually exclusive in the open V- versus closed ring-shape conformation. Together, our data suggest that targeting exquisite BMP PD-binding sites by extracellular protein and GAG scaffolds integrates BMP GF bioavailability in a contextual manner in development, postnatal life, and connective tissue disease.


Asunto(s)
Proteína Morfogenética Ósea 7 , Glicosaminoglicanos , Proteína Morfogenética Ósea 7/metabolismo , Heparina/metabolismo , Fibrilina-1/metabolismo , Simulación del Acoplamiento Molecular , Proteínas Morfogenéticas Óseas/metabolismo , Heparitina Sulfato/metabolismo , Unión Proteica , Proteína Morfogenética Ósea 2/metabolismo
2.
FASEB J ; 35(3): e21353, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33629769

RESUMEN

Since their discovery as pluripotent cytokines extractable from bone matrix, it has been speculated how bone morphogenetic proteins (BMPs) become released and activated from the extracellular matrix (ECM). In contrast to TGF-ßs, most investigated BMPs are secreted as bioactive prodomain (PD)-growth factor (GF) complexes (CPLXs). Recently, we demonstrated that PD-dependent targeting of BMP-7 CPLXs to the extracellular fibrillin microfibril (FMF) components fibrillin-1 and -2 represents a BMP sequestration mechanism by rendering the GF latent. Understanding how BMPs become activated from ECM scaffolds such as FMF is crucial to elucidate pathomechanisms characterized by aberrant BMP activation and ECM destruction. Here, we describe a new MMP-dependent BMP-7 activation mechanism from ECM-targeted pools via specific PD degradation. Using Edman sequencing and mutagenesis, we identified a new and conserved MMP-13 cleavage site within the BMP-7 PD. A degradation screen with different BMP family PDs and representative MMP family members suggested utilization of the identified site in a general MMP-driven BMP activation mechanism. Furthermore, sandwich ELISA and solid phase cleavage studies in combination with bioactivity assays, single particle TEM, and in silico molecular docking experiments provided evidence that PD cleavage by MMP-13 leads to BMP-7 CPLX disintegration and bioactive GF release.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Matriz Extracelular/metabolismo , Metaloproteinasas de la Matriz/fisiología , Secuencias de Aminoácidos , Animales , Proteína Morfogenética Ósea 7/química , Proteína Morfogenética Ósea 7/metabolismo , Proteínas Morfogenéticas Óseas/química , Células HEK293 , Humanos , Metaloproteinasa 13 de la Matriz/fisiología , Ratones , Simulación del Acoplamiento Molecular , Dominios Proteicos
3.
J Biol Chem ; 293(1): 203-214, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29146595

RESUMEN

C-type lectin domain family 3 member A (CLEC3A) is a poorly characterized protein belonging to the superfamily of C-type lectins. Its closest homologue tetranectin binds to the kringle 4 domain of plasminogen and enhances its association with tissue plasminogen activator (tPA) thereby enhancing plasmin production, but whether CLEC3A contributes to plasminogen activation is unknown. Here, we recombinantly expressed murine and human full-length CLEC3As as well as truncated forms of CLEC3A in HEK-293 Epstein-Barr nuclear antigen (EBNA) cells. We analyzed the structure of recombinant CLEC3A by SDS-PAGE and immunoblot, glycan analysis, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, size-exclusion chromatography, circular dichroism spectroscopy, and electron microscopy; compared the properties of the recombinant protein with those of CLEC3A extracted from cartilage; and investigated its tissue distribution and extracellular assembly by immunohistochemistry and immunofluorescence microscopy. We found that CLEC3A mainly occurs as a monomer, but also forms dimers and trimers, potentially via a coiled-coil α-helix. We also noted that CLEC3A can be modified with chondroitin/dermatan sulfate side chains and tends to oligomerize to form higher aggregates. We show that CLEC3A is present in resting, proliferating, and hypertrophic growth-plate cartilage and assembles into an extended extracellular network in cultures of rat chondrosarcoma cells. Further, we found that CLEC3A specifically binds to plasminogen and enhances tPA-mediated plasminogen activation. In summary, we have determined the structure, tissue distribution, and molecular function of the cartilage-specific lectin CLEC3A and show that CLEC3A binds to plasminogen and participates in tPA-mediated plasminogen activation.


Asunto(s)
Lectinas Tipo C/metabolismo , Activadores Plasminogénicos/metabolismo , Activador de Tejido Plasminógeno/metabolismo , Secuencia de Aminoácidos , Animales , Cartílago/metabolismo , Cromatografía en Gel , Células HEK293 , Humanos , Inmunohistoquímica , Lectinas Tipo C/biosíntesis , Lectinas Tipo C/genética , Ratones , Ratones Endogámicos C57BL , Plasminógeno/metabolismo , Unión Proteica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética
4.
J Biol Chem ; 291(24): 12732-12746, 2016 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-27059954

RESUMEN

Since the discovery of bone morphogenetic proteins (BMPs) as pluripotent cytokines extractable from bone matrix, it has been speculated how targeting of BMPs to the extracellular matrix (ECM) modulates their bioavailability. Understanding these processes is crucial for elucidating pathomechanisms of connective tissue disorders characterized by ECM deficiency and growth factor dysregulation. Here, we provide evidence for a new BMP targeting and sequestration mechanism that is controlled by the ECM molecule fibrillin-1. We present the nanoscale structure of the BMP-7 prodomain-growth factor complex using electron microscopy, small angle x-ray scattering, and circular dichroism spectroscopy, showing that it assumes an open V-like structure when it is bioactive. However, upon binding to fibrillin-1, the BMP-7 complex is rendered into a closed ring shape, which also confers latency to the growth factor, as demonstrated by bioactivity measurements. BMP-7 prodomain variants were used to map the critical epitopes for prodomain-growth factor and prodomain-prodomain binding. Together, these data show that upon prodomain binding to fibrillin-1, the BMP-7 complex undergoes a conformational change, which denies access of BMP receptors to the growth factor.


Asunto(s)
Proteína Morfogenética Ósea 7/metabolismo , Matriz Extracelular/metabolismo , Fibrilina-1/metabolismo , Microfibrillas/metabolismo , Secuencia de Aminoácidos , Animales , Proteína Morfogenética Ósea 7/química , Proteína Morfogenética Ósea 7/genética , Línea Celular , Dicroismo Circular , Fibrilina-1/química , Fibrilina-1/genética , Células HEK293 , Humanos , Microscopía Electrónica de Transmisión , Modelos Moleculares , Nanoestructuras/química , Nanoestructuras/ultraestructura , Unión Proteica , Conformación Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Dispersión del Ángulo Pequeño , Resonancia por Plasmón de Superficie , Difracción de Rayos X
5.
J Biol Chem ; 291(3): 1103-14, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26601954

RESUMEN

MFAP4 (microfibrillar-associated protein 4) is an extracellular glycoprotein found in elastic fibers without a clearly defined role in elastic fiber assembly. In the present study, we characterized molecular interactions between MFAP4 and elastic fiber components. We established that MFAP4 primarily assembles into trimeric and hexameric structures of homodimers. Binding analysis revealed that MFAP4 specifically binds tropoelastin and fibrillin-1 and -2, as well as the elastin cross-linking amino acid desmosine, and that it co-localizes with fibrillin-1-positive fibers in vivo. Site-directed mutagenesis disclosed residues Phe(241) and Ser(203) in MFAP4 as being crucial for type I collagen, elastin, and tropoelastin binding. Furthermore, we found that MFAP4 actively promotes tropoelastin self-assembly. In conclusion, our data identify MFAP4 as a new ligand of microfibrils and tropoelastin involved in proper elastic fiber organization.


Asunto(s)
Proteínas Portadoras/metabolismo , Desmosina/metabolismo , Tejido Elástico/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Glicoproteínas/metabolismo , Microfibrillas/metabolismo , Proteínas de Microfilamentos/metabolismo , Modelos Moleculares , Tropoelastina/metabolismo , Sustitución de Aminoácidos , Animales , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas de la Matriz Extracelular/química , Proteínas de la Matriz Extracelular/genética , Fibrilina-1 , Fibrilinas , Glicoproteínas/química , Glicoproteínas/genética , Humanos , Ligandos , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Mutación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerización de Proteína , Transporte de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Tropoelastina/química , Tropoelastina/genética
6.
Proc Natl Acad Sci U S A ; 111(36): 13063-8, 2014 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-25157165

RESUMEN

Bone morphogenetic proteins (BMPs) orchestrate key cellular events, such as proliferation and differentiation, in development and homeostasis. Extracellular antagonists, such as chordin, are essential regulators of BMP signaling. Chordin binds to BMPs blocking interaction with receptors, and cleavage by tolloid proteinases is thought to relieve this inhibition. A model has been previously proposed where chordin adopts a horseshoe-like arrangement enabling BMP binding cooperatively by terminal domains (1). Here, we present the nanoscale structure of human chordin using electron microscopy, small angle X-ray scattering, and solution-based biophysical techniques, which together show that chordin indeed has a compact horseshoe-shaped structure. Chordin variants were used to map domain locations within the chordin molecule. The terminal BMP-binding domains protrude as prongs from the main body of the chordin structure, where they are well positioned to interact with the growth factor. The spacing provided by the chordin domains supports the principle of a cooperative BMP-binding arrangement that the original model implied in which growth factors bind to both an N- and C-terminal von Willebrand factor C domain of chordin. Using binding and bioactivity assays, we compared full-length chordin with two truncated chordin variants, such as those produced by partial tolloid cleavage. Cleavage of either terminal domain has little effect on the affinity of chordin for BMP-4 and BMP-7 but C-terminal cleavage increases the efficacy of chordin as a BMP-4 inhibitor. Together these data suggest that partial tolloid cleavage is insufficient to ablate BMP inhibition and the C-terminal chordin domains play an important role in BMP regulation.


Asunto(s)
Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Glicoproteínas/química , Péptidos y Proteínas de Señalización Intercelular/química , Nanopartículas/química , Animales , Proteínas Morfogenéticas Óseas/química , Glicoproteínas/ultraestructura , Células HEK293 , Humanos , Hidrodinámica , Imagenología Tridimensional , Ratones , Modelos Moleculares , Proteínas Mutantes/química , Nanopartículas/ultraestructura , Unión Proteica , Estructura Terciaria de Proteína , Dispersión del Ángulo Pequeño , Soluciones , Resonancia por Plasmón de Superficie , Difracción de Rayos X
7.
Biochem Soc Trans ; 43(5): 795-800, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26517884

RESUMEN

Chordin-mediated regulation of bone morphogenetic protein (BMP) family growth factors is essential in early embryogenesis and adult homoeostasis. Chordin binds to BMPs through cysteine-rich von Willebrand factor type C (vWC) homology domains and blocks them from interacting with their cell surface receptors. These domains also self-associate and enable chordin to target related proteins to fine-tune BMP regulation. The chordin-BMP inhibitory complex is strengthened by the secreted glycoprotein twisted gastrulation (Tsg); however, inhibition is relieved by cleavage of chordin at two specific sites by tolloid family metalloproteases. As Tsg enhances this cleavage process, it serves a dual role as both promoter and inhibitor of BMP signalling. Recent developments in chordin research suggest that rather than simply being by-products, the cleavage fragments of chordin continue to play a role in BMP regulation. In particular, chordin cleavage at the C-terminus potentiates its anti-BMP activity in a type-specific manner.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Glicoproteínas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Modelos Biológicos , Proteínas/metabolismo , Transducción de Señal , Metaloproteinasas Similares a Tolloid/metabolismo , Animales , Receptores de Proteínas Morfogenéticas Óseas/agonistas , Receptores de Proteínas Morfogenéticas Óseas/química , Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/química , Proteínas Morfogenéticas Óseas/metabolismo , Glicoproteínas/química , Humanos , Péptidos y Proteínas de Señalización Intercelular/química , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Proteínas/química , Proteolisis , Metaloproteinasas Similares a Tolloid/química
8.
J Invest Dermatol ; 142(11): 2940-2948.e2, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35613627

RESUMEN

AMACO (VWA2 protein) is a basement membrane-associated protein secreted by epithelial cells. It is strongly expressed when invagination or budding occurs during development. AMACO associates with the Fraser complex, which when mutated causes Fraser syndrome, characterized by subepidermal blistering, cryptophthalmos, and syndactyly. The core Fraser complex proteins FRAS1, FREM1, and FREM2 localize at the dermal‒epidermal junction and mediate adhesion to the underlying dermis during embryonic development. Earlier transmission electron microscopy studies of adult mouse skin showed clustered AMACO deposition below the lamina densa. In this study, we report a distinct cord-like suprastructure in the neonate dermis to which AMACO- and Fraser complex‒associated proteins contribute. We propose anchoring cords to designate the suprastructure. Anchoring cords have a diameter of 60 nm when immunolabeled, originate from the basement membrane, and extend several microns into the dermis. In normal skin, they are evident after immunogold electron microscopy and are strikingly appreciated in thicker sections. In recessive dystrophic epidermolysis bullosa skin, they are directly visible where collagen VII anchoring fibrils are ablated. Immunofluorescence and coimmunoprecipitation of skin extracts identify a direct interaction of FREM2 and AMACO.


Asunto(s)
Epidermólisis Ampollosa Distrófica , Proteínas de la Matriz Extracelular , Ratones , Animales , Embarazo , Femenino , Proteínas de la Matriz Extracelular/metabolismo , Piel/metabolismo , Membrana Basal/metabolismo , Epidermólisis Ampollosa Distrófica/metabolismo , Colágeno/metabolismo , Proteínas de la Membrana/metabolismo
9.
J Invest Dermatol ; 136(6): 1150-1160, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26945878

RESUMEN

Elastin microfibril interface-located proteins (EMILINs) 1 and 2 belong to a family of structurally related extracellular glycoproteins with unique functions in the extracellular space, such as modulation of pro-transforming growth factor-ß processing, activation of the extrinsic apoptotic pathway, and regulation of Hedgehog and Wnt ligand bioavailability. However, little is known about how EMILINs may exert their extracellular functions. We therefore investigated the spatiotemporal localization and deposition of EMILIN-1 and -2 within the extracellular space. By using immunoelectron and immunofluorescence microscopy together with biochemical extraction, we showed that EMILIN-1 and -2 are targeted to fibrillin microfibrils in the skin. In addition, during skin wound healing and in vitro matrix fiber assembly by primary dermal fibroblasts, EMILIN-1 and -2 are deposited on and coregulated with fibrillin. Analysis of wounds and mouse embryonic fibroblast cultures showed that EMILIN-1 and -2 network formation also requires the presence of fibronectin. Disruption of microfibrils in fibrillin-1-deficient mice leads to fragmentation of the EMILIN-1 and -2 networks, suggesting an involvement of EMILINs in fibrillin-related skin disorders. The addition of EMILINs to the ligand repertoire of fibrillin strengthens the concept of fibrillin microfibrils as extracellular scaffolds integrating cellular force transmission and growth factor bioactivity.


Asunto(s)
Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Glicoproteínas/metabolismo , Glicoproteínas de Membrana/metabolismo , Heridas y Lesiones/patología , Animales , Biomarcadores/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Fibrilina-1/genética , Fibrilinas/metabolismo , Fibroblastos/citología , Ratones , Ratones Mutantes , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Piel/lesiones , Cicatrización de Heridas/fisiología
10.
Matrix Biol ; 55: 49-62, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26829466

RESUMEN

Twisted gastrulation (Tsg) and chordin are secreted glycoproteins that function together as BMP (bone morphogenetic protein) antagonists to regulate BMP growth factor signalling. Chordin binds to BMPs, preventing them from interacting with their receptors and Tsg is known to strengthen this inhibitory complex. Tsg also acts as a BMP agonist by promoting cleavage of chordin by tolloid-family proteinases. Here we explore the structural mechanism through which Tsg exerts this dual activity. We have characterized the nanoscale structure of human Tsg using in-solution biomolecular analysis and show that Tsg is a globular monomer with a flattened cross shape. Tsg has a high proportion of N-linked glycans, in relation to its molecular weight, which supports a role in solubilising BMPs. Tsg binds with high affinity to the C-terminal region of chordin and was also able to inhibit BMP-7 signalling directly but did not have an effect on BMP-4 signalling. Although both Tsg and mammalian tolloid are involved in chordin cleavage, no interaction could be detected between them using surface plasmon resonance. Together these data suggest that Tsg functions as a BMP-agonist by inducing conformational change in chordin making it more susceptible to tolloid cleavage and as a BMP-antagonist either independently or via a chordin-mediated mechanism. Following single cleavage of chordin by tolloids, Tsg continues to strengthen the inhibitory complex, supporting a role for partially cleaved chordin in BMP regulation.


Asunto(s)
Proteínas Morfogenéticas Óseas/fisiología , Proteínas/química , Animales , Línea Celular , Glicoproteínas/química , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/química , Ratones , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Proteínas/fisiología , Dispersión del Ángulo Pequeño , Transducción de Señal , Difracción de Rayos X
11.
Dis Model Mech ; 8(4): 403-15, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25713297

RESUMEN

Recent studies have revealed an important role for LTBP-4 in elastogenesis. Its mutational inactivation in humans causes autosomal recessive cutis laxa type 1C (ARCL1C), which is a severe disorder caused by defects of the elastic fiber network. Although the human gene involved in ARCL1C has been discovered based on similar elastic fiber abnormalities exhibited by mice lacking the short Ltbp-4 isoform (Ltbp4S(-/-)), the murine phenotype does not replicate ARCL1C. We therefore inactivated both Ltbp-4 isoforms in the mouse germline to model ARCL1C. Comparative analysis of Ltbp4S(-/-) and Ltbp4-null (Ltbp4(-/-)) mice identified Ltbp-4L as an important factor for elastogenesis and postnatal survival, and showed that it has distinct tissue expression patterns and specific molecular functions. We identified fibulin-4 as a previously unknown interaction partner of both Ltbp-4 isoforms and demonstrated that at least Ltbp-4L expression is essential for incorporation of fibulin-4 into the extracellular matrix (ECM). Overall, our results contribute to the current understanding of elastogenesis and provide an animal model of ARCL1C.


Asunto(s)
Cutis Laxo/genética , Cutis Laxo/patología , Genes Recesivos , Proteínas de Unión a TGF-beta Latente/genética , Animales , Animales Recién Nacidos , Aorta/anomalías , Aorta/patología , Cardiomegalia/complicaciones , Cardiomegalia/patología , Tejido Elástico/metabolismo , Elastina/metabolismo , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Silenciador del Gen , Glicosilación , Ventrículos Cardíacos/patología , Humanos , Proteínas de Unión a TGF-beta Latente/química , Proteínas de Unión a TGF-beta Latente/deficiencia , Proteínas de Unión a TGF-beta Latente/metabolismo , Pulmón/anomalías , Pulmón/patología , Ratones Endogámicos C57BL , Modelos Biológicos , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Piel/patología , Pérdida de Peso
12.
J Invest Dermatol ; 134(5): 1313-1322, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24232570

RESUMEN

Fraser syndrome (FS) is a phenotypically variable, autosomal recessive disorder characterized by cryptophthalmus, cutaneous syndactyly, and other malformations resulting from mutations in FRAS1, FREM2, and GRIP1. Transient embryonic epidermal blistering causes the characteristic defects of the disorder. Fras1, Frem1, and Frem2 form the extracellular Fraser complex, which is believed to stabilize the basement membrane. However, several cases of FS could not be attributed to mutations in FRAS1, FREM2, or GRIP1, and FS displays high clinical variability, suggesting that there is an additional genetic, possibly modifying contribution to this disorder. An extracellular matrix protein containing VWA-like domains related to those in matrilins and collagens (AMACO), encoded by the VWA2 gene, has a very similar tissue distribution to the Fraser complex proteins in both mouse and zebrafish. Here, we show that AMACO deposition is lost in Fras1-deficient zebrafish and mice and that Fras1 and AMACO interact directly via their chondroitin sulfate proteoglycan (CSPG) and P2 domains. Knockdown of vwa2, which alone causes no phenotype, enhances the phenotype of hypomorphic Fras1 mutant zebrafish. Together, our data suggest that AMACO represents a member of the Fraser complex.


Asunto(s)
Membrana Basal/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Síndrome de Fraser/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Biomarcadores de Tumor , Proteínas de Unión al Calcio , Matriz Extracelular/metabolismo , Femenino , Síndrome de Fraser/genética , Técnicas de Silenciamiento del Gen , Genes Recesivos , Masculino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fenotipo , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA