Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Dis ; 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33823609

RESUMEN

Two fields of coriander (Coriandrum sativum L.) seed crops of proprietary cultivars were observed in the Columbia Basin of Washington in July 2020 with 40 and 90% incidence of plants showing stunting and leaf and stem discoloration, sometimes with mild leaf curl. Foliar discoloration ranged from yellow to red and purple. Sweep-netting along the field edges collected one beet leafhopper (Circulifer tenellus Baker; BLH), the known vector of Beet curly top virus (BCTV), Beet leafhopper transmitted virescence agent (BLTVA) phytoplasma, and Spiroplasma citri, all of which affect Solanaceae and Apiaceae crops in Washington (Crosslin et al. 2006; Johnson and Martin 1998; Lee et al. 2006). Nucleic acids extracted from leaves and petioles of 12 coriander plants (8 from Field 1 and 4 from Field 2) using the Dellaporta method, and from the BLH using the CTAB method (Crosslin et al. 2006) were subjected to PCR assays to detect the BLH-transmitted pathogens which cause yellow and purple discoloration in potato (Solanum tuberosum L.) and carrot (Daucus carota subsp. sativus (Hoffm.) Arc.) in this region. BLTVA was targeted using a species-specific nested PCR assay with primers P1 and P7, followed by primers FU5 and BLTVA-int (Crosslin et al. 2006); S. citri was targeted using primers P89-F and P89-R (Yokomi et al. 2008); and BCTV was targeted using curtovirus primers BCTV2-F and BCTV2-R (Strausbaugh et al. 2008). BLTVA and S. citri were not detected in the plants, but curtovirus was detected in 10 of the 12 plants. All three pathogens were detected from the single BLH. A 519 bp region of the curtovirus capsid protein gene was amplified from seven plants (5 from Field 1 and 2 from Field 2) and the BLH, and cloned into TOP10 Escherichia coli cells using the pCR-2.1 TOPO vector (Invitrogen, Carlsbad, CA). Three clones were sequenced from each sample. For each of six plant samples and the BLH, the three clones were identical and consensus sequences were generated (GenBank Accessions MW234419 to MW234425). For the seventh plant, two clones were identical in sequence (MW234426) and the third contained 12 single nucleotide polymorphisms (MW234427). All sequences were subjected to an NCBI BLASTn analysis and showed 98.3 to 99.8% identity with BCTV sequences. Additional PCR assays with primers BMCTV-C1 2213F and BMCTV-C1 2609R (Strausbaugh et al. 2008), targeting the C1 gene of the Worland strain of BCTV, detected BCTV-Worland-like strains in all plants and the BLH, confirming that BCTV was present and indicating that the strain-specific primer pair was more sensitive than the universal curtovirus primers. Yield losses in the two fields were approximately 60%, with reduced seed size but not seed quality. BCTV infections in coriander crops have been observed in the Columbia Basin in 2002, 2005, 2008, and 2013, with yield losses ranging from 10 to 100% per field, though official reports were not made following the diagnoses (Crosslin, du Toit, and Frost, unpublished data). BCTV has caused millions of dollars of losses in the U.S. in crops such as sugar beet (Beta vulgaris subsp. vulgaris L.), tomato (S. lycopersicum L.), and pepper (S. annuum L.) (Johnson and Martin 1998). This is the first publication of BCTV affecting seed production of the specialty crop C. sativum. The observation of 90% incidence of symptoms in one field suggests that resistant cultivars and/or insect pest management practices are needed to prevent significant impacts of BCTV on coriander seed production in this semi-arid region.

2.
Ecol Appl ; 30(5): e02109, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32108396

RESUMEN

Characterizing factors affecting insect pest populations across variable landscapes is a major challenge for agriculture. In natural ecosystems, insect populations are strongly mediated by landscape and climatic factors. However, it has proven difficult to evaluate if similar factors predict pest dynamics in agroecosystems because control tactics exert strong confounding effects. We addressed this by assessing whether species distribution models could effectively characterize dynamics of an insect pest in intensely managed agroecosystems. Our study used a regional multi-year data set to assess landscape and climatic drivers of potato psyllid (Bactericera cockerelli) populations, which are often subjected to calendar-based insecticide treatments because they transmit pathogens to crops. Despite this, we show that psyllid populations were strongly affected by landscape and climatic factors. Psyllids were more abundant in landscapes with high connectivity, low crop diversity, and large natural areas. Psyllid population dynamics were also mediated by climatic factors, particularly precipitation and humidity. Our results show that many of the same factors that drive insect population dynamics in natural ecosystems can have similar effects in an intensive agroecosystem. More broadly, our study shows that models incorporating landscape and climatic factors can describe pest populations in agroecosystems and may thus promote more sustainable pest management.


Asunto(s)
Ecosistema , Hemípteros , Animales , Insectos Vectores , Insectos , Dinámica Poblacional
3.
Environ Entomol ; 52(2): 243-253, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36869841

RESUMEN

Insects often harbor bacterial endosymbionts that provide them with nutritional benefit or with protection against natural enemies, plant defenses, insecticides, and abiotic stresses. Certain endosymbionts may also alter acquisition and transmission of plant pathogens by insect vectors. We identified bacterial endosymbionts from four leafhopper vectors (Hemiptera: Cicadellidae) of 'Candidatus Phytoplasma' species by direct sequencing 16S rDNA and confirmed endosymbiont presence and identity by species-specific conventional PCR. We examined three vectors of Ca. Phytoplasma pruni, causal agent of cherry X-disease [Colladonus geminatus (Van Duzee), Colladonus montanus reductus (Van Duzee), Euscelidius variegatus (Kirschbaum)] - and a vector of Ca. Phytoplasma trifolii, the causal agent of potato purple top disease [Circulifer tenellus (Baker)]. Direct sequencing of 16S identified the two obligate endosymbionts of leafhoppers, 'Ca. Sulcia' and 'Ca. Nasuia', which are known to produce essential amino acids lacking in the leafhoppers' phloem sap diet. About 57% of C. geminatus also harbored endosymbiotic Rickettsia. We identified 'Ca. Yamatotoia cicadellidicola' in Euscelidius variegatus, providing just the second host record for this endosymbiont. Circulifer tenellus harbored the facultative endosymbiont Wolbachia, although the average infection rate was only 13% and all males were Wolbachia-uninfected. A significantly greater percentage of Wolbachia-infected Ci. tenellus adults than uninfected adults carried Ca. P. trifolii, suggesting that Wolbachia may increase this insect's ability to tolerate or acquire this pathogen. Results of our study provide a foundation for continued work on interactions between leafhoppers, bacterial endosymbionts, and phytoplasma.


Asunto(s)
Hemípteros , Phytoplasma , Masculino , Animales , Hemípteros/genética , Phytoplasma/genética , Bacterias/genética , Reacción en Cadena de la Polimerasa , Insectos Vectores/microbiología , Enfermedades de las Plantas/microbiología
4.
Environ Entomol ; 49(4): 974-982, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32533139

RESUMEN

Understanding factors that affect the population dynamics of insect pest species is key for developing integrated pest management strategies in agroecosystems. Most insect pest populations are strongly regulated by abiotic factors such as temperature and precipitation, and assessing relationships between abiotic conditions and pest dynamics can aid decision-making. However, many pests are also managed with insecticides, which can confound relationships between abiotic factors and pest dynamics. Here we used data from a regional monitoring network in the Pacific Northwest United States to explore effects of abiotic factors on populations of an intensively managed potato pest, the potato psyllid (Bactericera cockerelli Sulc), which can vector Candidatus Liberibacter psyllaurus, a bacterial pathogen of potatoes. We assessed effects of temperature on psyllid populations, and show psyllid population growth followed predictable patterns within each year, but there was considerable variation across years in psyllid abundance. Examination of seasonal weather patterns suggested that in 2017, when psyllid populations were less abundant by several orders of magnitude than other years, a particularly long and cold period of winter weather may have harmed overwintering populations and limited population growth. The rate of degree-day accumulation over time, as well as total degree-day accumulation also affected trap catch abundance, likely by mediating the number of psyllid generations per season. Our findings indicate that growers can reliably infer the potential magnitude of risk from potato psyllids using monitoring data, date of first detection, seasonal weather patterns, and population size early in the growing season.


Asunto(s)
Hemípteros , Solanum tuberosum , Animales , Noroeste de Estados Unidos , Enfermedades de las Plantas , Dinámica Poblacional , Estaciones del Año
5.
Evol Appl ; 13(10): 2740-2753, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33294020

RESUMEN

Changing climate and land-use practices have the potential to bring previously isolated populations of pest insects into new sympatry. This heightens the need to better understand how differing patterns of host-plant association, and unique endosymbionts, serve to promote genetic isolation or integration. We addressed these factors in populations of potato psyllid, Bactericera cockerelli (Sulc), a generalist herbivore that vectors a bacterial pathogen (Candidatus Liberibacter solanacearum, causal pathogen of zebra chip disease) of potato (Solanum tuberosum L.). Genome-wide SNP data revealed two major genetic clusters-psyllids collected from potato crops were genetically similar to psyllids found on a common weed, Lycium spp., but dissimilar from those found on another common non-crop host, Solanum dulcamara L. Most psyllids found on Lycium spp. and potato represented a single mitochondrial cytochrome oxidase I (COI) haplotype that has been suggested to not be native to the region, and whose arrival may have been concurrent with zebra chip disease first emerging. The putatively introduced COI haplotype usually co-occurred with endosymbiotic Wolbachia, while the putatively resident COI haplotype generally did not. Genetic intermediates between the two genetic populations of insects were rare, consistent with recent sympatry or reproductive isolation, although admixture patterns of apparent hybrids were consistent with introgression of genes from introduced into resident populations. Our results suggest that both host-plant associations and endosymbionts are shaping the population genetic structure of sympatric psyllid populations associated with different non-crop hosts. It is of future interest to explicitly examine vectorial capacity of the two populations and their potential hybrids, as population structure and hybridization might alter regional vector capacity and disease outbreaks.

6.
Environ Entomol ; 48(3): 603-613, 2019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-31041987

RESUMEN

Psyllids (Hemiptera: Psylloidea) are phloem-feeding insects that tend to be highly specific in their host plants. Some species are well-known agricultural pests, often as vectors of plant pathogens. Many pest psyllids colonize agricultural fields from non-crop reproductive hosts or from non-host transitory and winter shelter plants. Uncertainty about which non-crop species serve as sources of psyllids hinders efforts to predict which fields or orchards are at greater risk of being colonized by psyllids. High-throughput sequencing of trnL, trnF, and ITS was used to examine the dietary histories of three pest and two non-pest psyllid species encompassing a diversity of lifecycles: Cacopsylla pyricola (Förster) (Psyllidae), Bactericera cockerelli (Sulc) (Triozidae), Diaphorina citri Kuwayama (Liviidae), Aphalara loca Caldwell (Aphalaridae), and a Cacopsylla species complex associated with Salix (Malphighiales: Salicaceae). Results revealed an unexpectedly high level of feeding on non-host species by all five psyllid species. The identification of the dietary history of the psyllids allowed us to infer their landscape-scale movements prior to capture. Our study demonstrates a novel use for gut content analysis-to provide insight into landscape-scale movements of psyllids-thus providing a means to pinpoint the non-crop sources of pest psyllids colonizing agricultural crops. We observed previously unknown psyllid behaviors during our efforts to develop this method and discuss new research directions for the study of psyllid ecology.


Asunto(s)
Hemípteros , Animales , Productos Agrícolas , Reproducción
7.
Environ Entomol ; 45(4): 781-9, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27271946

RESUMEN

Pest phenology models allow producers to anticipate pest outbreaks and deploy integrated pest management (IPM) strategies. Phenology models are particularly useful for cropping systems with multiple economically damaging pests throughout a season. Potato (Solanum tuberosum L.) crops of Washington State, USA, are attacked by many insect pests including the potato tuberworm (Phthorimaea operculella Zeller), the beet leafhopper (Circulifer tenellus Baker), and the green peach aphid (Myzus persicae Sulzer). Each of these pests directly damages potato foliage or tubers; C. tenellus and M. persicae also transmit pathogens that can drastically reduce potato yields. We monitored the seasonal population dynamics of these pests by conducting weekly sampling on a network of commercial farms from 2007 to 2014. Using these data, we developed phenology models to characterize the seasonal population dynamics of each pest based on accumulated degree-days (DD). All three pests exhibited consistent population dynamics across seasons that were mediated by temperature. Of the three pests, C. tenellus was generally the first detected in potato crops, with 90% of adults captured by 936 DD. In contrast, populations of P. operculella and M. persicae built up more slowly over the course of the season, with 90% cumulative catch by 1,590 and 2,634 DD, respectively. Understanding these seasonal patterns could help potato producers plan their IPM strategies while allowing them to move away from calendar-based applications of insecticides. More broadly, our results show how long-term monitoring studies that explore dynamics of multiple pest species can aid in developing IPM strategies in crop systems.


Asunto(s)
Hemípteros/fisiología , Control de Insectos , Mariposas Nocturnas/fisiología , Estaciones del Año , Solanum tuberosum , Animales , Áfidos/fisiología , Larva/crecimiento & desarrollo , Larva/fisiología , Masculino , Modelos Teóricos , Mariposas Nocturnas/crecimiento & desarrollo , Dinámica Poblacional , Solanum tuberosum/crecimiento & desarrollo , Washingtón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA