Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mutagenesis ; 38(5): 253-263, 2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37233347

RESUMEN

Measurement of DNA migration in the comet assay can be done by image analysis or visual scoring. The latter accounts for 20%-25% of the published comet assay results. Here we assess the intra- and inter-investigator variability in visual scoring of comets. We include three training sets of comet images, which can be used as reference for researchers who wish to use visual scoring of comets. Investigators in 11 different laboratories scored the comet images using a five-class scoring system. There is inter-investigator variation in the three training sets of comets (i.e. coefficient of variation (CV) = 9.7%, 19.8%, and 15.2% in training sets I-III, respectively). However, there is also a positive correlation of inter-investigator scoring in the three training sets (r = 0.60). Overall, 36% of the variation is attributed to inter-investigator variation and 64% stems from intra-investigator variation in scoring between comets (i.e. the comets in training sets I-III look slightly different and this gives rise to heterogeneity in scoring). Intra-investigator variation in scoring was also assessed by repeated analysis of the training sets by the same investigator. There was larger variation when the training sets were scored over a period of six months (CV = 5.9%-9.6%) as compared to 1 week (CV = 1.3%-6.1%). A subsequent study revealed a high inter-investigator variation when premade slides, prepared in a central laboratory, were stained and scored by investigators in different laboratories (CV = 105% and 18%-20% in premade slides with comets from unexposed and hydrogen peroxide-exposed cells, respectively). The results indicate that further standardization of visual scoring is desirable. Nevertheless, the analysis demonstrates that visual scoring is a reliable way of analysing DNA migration in comets.

2.
Mutagenesis ; 38(5): 283-294, 2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37228081

RESUMEN

The comet assay is a simple and versatile method for measurement of DNA damage in eukaryotic cells. More specifically, the assay detects DNA migration from agarose gel-embedded nucleoids, which depends on assay conditions and the level of DNA damage. Certain steps in the comet assay procedure have substantial impact on the magnitude of DNA migration (e.g. electric potential and time of electrophoresis). Inter-laboratory variation in DNA migration levels occurs because there is no agreement on optimal assay conditions or suitable assay controls. The purpose of the hCOMET ring trial was to test potassium bromate (KBrO3) as a positive control for the formamidopyrimidine DNA glycosylase (Fpg)-modified comet assay. To this end, participating laboratories used semi-standardized protocols for cell culture (i.e. cell culture, KBrO3 exposure, and cryopreservation of cells) and comet assay procedures, whereas the data acquisition was not standardized (i.e. staining of comets and image analysis). Segregation of the total variation into partial standard deviation (SD) in % Tail DNA units indicates the importance of cell culture procedures (SD = 10.9), comet assay procedures (SD = 12.3), staining (SD = 7.9) and image analysis (SD = 0.5) on the overall inter-laboratory variation of DNA migration (SD = 18.2). Future studies should assess sources of variation in each of these steps. On the positive side, the hCOMET ring trial demonstrates that KBrO3 is a robust positive control for the Fpg-modified comet assay. In conclusion, the hCOMET ring trial has demonstrated a high reproducibility of detecting genotoxic effects by the comet assay, but inter-laboratory variation of DNA migration levels is a concern.

3.
Mutagenesis ; 38(5): 273-282, 2023 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-37357800

RESUMEN

The comet assay is widely used in biomonitoring studies for the analysis of DNA damage in leukocytes and peripheral blood mononuclear cells. Rather than processing blood samples directly, it can be desirable to cryopreserve whole blood or isolated cells for later analysis by the comet assay. However, this creates concern about artificial accumulation of DNA damage during cryopreservation. In this study, 10 laboratories used standardized cryopreservation and thawing procedures of monocytic (THP-1) or lymphocytic (TK6) cells. Samples were cryopreserved in small aliquots in 50% foetal bovine serum, 40% cell culture medium, and 10% dimethyl sulphoxide. Subsequently, cryopreserved samples were analysed by the standard comet assay on three occasions over a 3-year period. Levels of DNA strand breaks in THP-1 cells were increased (four laboratories), unaltered (four laboratories), or decreased (two laboratories) by long-term storage. Pooled analysis indicates only a modest positive association between storage time and levels of DNA strand breaks in THP-1 cells (0.37% Tail DNA per year, 95% confidence interval: -0.05, 0.78). In contrast, DNA strand break levels were not increased by cryopreservation in TK6 cells. There was inter-laboratory variation in levels of DNA strand breaks in THP-1 cells (SD = 3.7% Tail DNA) and TK6 reference sample cells (SD = 9.4% Tail DNA), whereas the intra-laboratory residual variation was substantially smaller (i.e. SD = 0.4%-2.2% Tail DNA in laboratories with the smallest and largest variation). In conclusion, the study shows that accumulation of DNA strand breaks in cryopreserved mononuclear blood cell lines is not a matter of concern.


Asunto(s)
Daño del ADN , Leucocitos Mononucleares , Ensayo Cometa/métodos , Leucocitos Mononucleares/metabolismo , Criopreservación/métodos , ADN/metabolismo
4.
Mutagenesis ; 38(5): 264-272, 2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37357815

RESUMEN

The formamidopyrimidine DNA glycosylase (Fpg)-modified comet assay is widely used for the measurement of oxidatively generated damage to DNA. However, there has not been a recommended long-term positive control for this version of the comet assay. We have investigated potassium bromate as a positive control for the Fpg-modified comet assay because it generates many Fpg-sensitive sites with a little concurrent generation of DNA strand breaks. Eight laboratories used the same procedure for the treatment of monocytic THP-1 cells with potassium bromate (0, 0.5, 1.5, and 4.5 mM) and subsequent cryopreservation in a freezing medium consisting of 50% foetal bovine serum, 40% RPMI-1640 medium, and 10% dimethyl sulphoxide. The samples were analysed by the Fpg-modified comet assay three times over a 3-year period. All laboratories obtained a positive concentration-response relationship in cryopreserved samples (linear regression coefficients ranging from 0.79 to 0.99). However, there was a wide difference in the levels of Fpg-sensitive sites between the laboratory with the lowest (4.2% Tail DNA) and highest (74% Tail DNA) values in THP-1 cells after exposure to 4.5 mM KBrO3. In an attempt to assess sources of inter-laboratory variation in Fpg-sensitive sites, comet images from one experiment in each laboratory were forwarded to a central laboratory for visual scoring. There was high consistency between measurements of %Tail DNA values in each laboratory and the visual score of the same comets done in the central laboratory (r = 0.98, P < 0.001, linear regression). In conclusion, the results show that potassium bromate is a suitable positive comet assay control.

5.
Mutagenesis ; 35(4): 341-348, 2020 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-32319518

RESUMEN

The comet assay is a popular assay in biomonitoring studies. DNA strand breaks (or unspecific DNA lesions) are measured using the standard comet assay. Oxidative stress-generated DNA lesions can be measured by employing DNA repair enzymes to recognise oxidatively damaged DNA. Unfortunately, there has been a tendency to fail to report results from assay controls (or maybe even not to employ assay controls). We believe this might have been due to uncertainty as to what really constitutes a positive control. It should go without saying that a biomonitoring study cannot have a positive control group as it is unethical to expose healthy humans to DNA damaging (and thus potentially carcinogenic) agents. However, it is possible to include assay controls in the analysis (here meant as a cryopreserved sample of cells i.e. included in each experiment as a reference sample). In the present report we tested potassium bromate (KBrO3) as a positive comet assay control for the formamidopyrimidine DNA glycosylase (Fpg)-modified comet assay. Ten laboratories used the same procedure for treatment of monocytic THP-1 cells with KBrO3 (0.5, 1.5 and 4.5 mM for 1 h at 37°C) and subsequent cryopreservation. Results from one laboratory were excluded in the statistical analysis because of technical issues in the Fpg-modified comet assay. All other laboratories found a concentration-response relationship in cryopreserved samples (regression coefficients from 0.80 to 0.98), although with different slopes ranging from 1.25 to 11.9 Fpg-sensitive sites (%DNA in tail) per 1 mM KBrO3. Our results demonstrate that KBrO3 is a suitable positive comet assay control.


Asunto(s)
Bromatos/toxicidad , Ensayo Cometa/normas , Daño del ADN , Monocitos/efectos de los fármacos , Monitoreo Biológico , ADN/efectos de los fármacos , ADN/metabolismo , ADN-Formamidopirimidina Glicosilasa , Humanos , Monocitos/metabolismo , Estrés Oxidativo , Células THP-1
6.
Biochim Biophys Acta ; 1830(1): 2233-42, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23116821

RESUMEN

BACKGROUND: Investigations concerned the mechanism of HT-29 cells radiosensitization by cis-9,trans-11-conjugated linoleic acid (c9,t11-CLA), a natural component of human diet with proven antitumor activity. METHODS: The cells were incubated for 24h with 70µM c9,t11-CLA and then X-irradiated. The following methods were used: gas chromatography (incorporation of the CLA isomer), flow cytometry (cell cycle), cloning (survival), Western blotting (protein distribution in membrane fractions), and pulse-field gel electrophoresis (rejoining of DNA double-strand breaks). In parallel, DNA-PK activity, γ-H2AX foci numbers and chromatid fragmentation were estimated. Gene expression was analysed by RT-PCR and chromosomal aberrations by the mFISH method. Nuclear accumulation of the EGF receptor (EGFR) was monitored by ELISA. RESULTS AND CONCLUSIONS: C9,t11-CLA sensitized HT-29 cells to X-radiation. This effect was not due to changes in cell cycle progression or DNA-repair-related gene expression. Post-irradiation DSB rejoining was delayed, corresponding with the insufficient DNA-PK activation, although chromosomal aberration frequencies did not increase. Distributions of cholesterol and caveolin-1 in cellular membrane fractions changed. The nuclear EGFR translocation, necessary to increase the DNA-PK activity in response to oxidative stress, was blocked. We suppose that c9,t11-CLA modified the membrane structure, thus disturbing the intracellular EGFR transport and the EGFR-dependent pro-survival signalling, both functionally associated with lipid raft properties. GENERAL SIGNIFICANCE: The results point to the importance of the cell membrane interactions with the nucleus after injury inflicted by X -rays. Compounds like c9,t11-CLA, that specifically alter membrane properties, could be used to develop new anticancer strategies.


Asunto(s)
Adenocarcinoma/radioterapia , Neoplasias Colorrectales/radioterapia , Microdominios de Membrana/metabolismo , Tolerancia a Radiación/efectos de los fármacos , Fármacos Sensibilizantes a Radiaciones/farmacología , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Roturas del ADN de Doble Cadena/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de la radiación , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Humanos , Ácidos Linoleicos Conjugados , Microdominios de Membrana/patología , Tolerancia a Radiación/efectos de la radiación , Rayos X
7.
Rep Pract Oncol Radiother ; 19(Suppl): S37-S41, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-28443197

RESUMEN

AIM: Investigation of the bystander effect in Chinese Hamster Ovary cells (CHO-K1) co-cultured with cells irradiated in the dose range of 0.1-4 Gy of high LET 12C ions and X-rays. BACKGROUND: The radiobiological effects of charged heavy particles on a cellular or molecular level are of fundamental importance in the field of biomedical applications, especially in hadron therapy and space radiation biology. MATERIALS AND METHODS: A heavy ion 12C beam from the Heavy Ion Laboratory of the University of Warsaw (HIL) was used to irradiate CHO-K1 cells. Cells were seeded in Petri dishes specially designed for irradiation purposes. Immediately after irradiation, cells were transferred into transwell culture insert dishes to enable co-culture of irradiated and non-irradiated cells. Cells from the membrane and well shared the medium but could not touch each other. To study bystander effects, a clonogenic survival assay was performed. RESULTS: The survival fraction of cells co-cultured with cells irradiated with 12C ions and X-rays was not reduced. CONCLUSIONS: The bystander effect was not observed in these studies.

8.
Toxicol In Vitro ; 99: 105850, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38801838

RESUMEN

Cytotoxic and genotoxic effects of novel mPEG-silane coated iron(III) oxide nanoparticles doped with magnesium (Mg0.1-γ-Fe2O3(mPEG-silane)0.5) have been investigated on human adenocarcinomic alveolar basal epithelial (A549) and human normal bronchial epithelial (BEAS-2B) cells. In the studies several molecular and cellular targets addressing to cell membrane, cytoplasm organelles and nucleus components were served as toxicological endpoints. The as-synthesized nanoparticles were found to be stable in the cell culture media and were examined for different concentration and exposure times. No cytotoxicity of the tested nanoparticles was found although these nanoparticles slightly increased reactive oxygen species in both cell types studied. Mg0.1-γ-Fe2O3(mPEG-silane)0.5 nanoparticles did not produce any DNA strand breaks and oxidative DNA damages in A549 and BEAS-2B cells. Different concentration of Mg0.1-γ-Fe2O3(mPEG-silane)0.5 nanoparticles and different incubation time did not affect cell migration. The lung cancer cells' uptake of the nanoparticles was more effective than in normal lung cells. Altogether, the results evidence that mPEG-silane coated iron(III) oxide nanoparticles doped with magnesium do not elucidate any deleterious effects on human normal and cancerous lung cells despite cellular uptake of these nanoparticles. Therefore, it seems reasonable to conclude that these novel biocompatible nanoparticles are promising candidates for further development towards medical applications.

9.
Radiat Res ; 199(6): 591-597, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37057975

RESUMEN

The Running the European Network of biological and retrospective dosimetry (RENEB) network of laboratories has a range of biological and physical dosimetry assays that can be deployed in the event of a radiation incident to provide exposure assessment. To maintain operational capability and provide training, RENEB runs regular inter-laboratory comparison (ILC) exercises. The RENEB ILC2021 was carried out with all the biological and physical dosimetry assays employed in the network. The focus of this paper is to evaluate the results from 6 laboratories that took part using the gamma-H2AX radiation-induced foci assay. For two laboratories this was their first RENEB ILC. Blood samples were homogenously exposed to 240 kVp X rays (1 Gy/min) to provide calibration data, (0-4 Gy), and a few weeks later three blind coded test samples, (0, 1.2 and 3.5 Gy) were prepared. All samples were allowed a 2 h repair time at 37°C before being transported, on ice packs, to the participating laboratories. On arrival, the samples were processed, scored either manually or automatically for gamma-H2AX foci and dose estimates for the 3 blind coded samples sent to the organizing laboratory. The temperature of samples during transit and the time taken to report the dose estimates were recorded. Subsequent examination of the data from each laboratory used the doses estimates to assign triage categories to the samples. After receipt of the samples, the quickest report of dose estimates was 4.6 h. Analysis of variance revealed that the laboratory carrying out the assay had a significant effect on the foci yield (P < 0.001) for the calibration data, but not on the dose estimates of the blind coded samples (P = 0.101). All laboratories correctly identified the unirradiated and irradiated samples, although the dose estimates for the latter tended to under-estimate the dose. Two participants seriously under-estimated the dose for the highly exposed sample, which resulted in the sample being placed in the lowest triage category not the highest. However, this under-estimation resulted from the samples not remaining cold during shipment, due to a delay in transit and was not related to the experience of the participating laboratory. Overall, the RENEB network laboratories have demonstrated it is possible to quickly identify a recent whole-body acute exposure using the gamma-H2AX assay within the conditions of the ILC. In addition, an ILC provides a useful training and harmonization exercise for laboratories.


Asunto(s)
Bioensayo , Radiometría , Humanos , Estudios Retrospectivos , Radiometría/métodos , Bioensayo/métodos , Laboratorios , Relación Dosis-Respuesta en la Radiación
10.
Mutagenesis ; 27(5): 551-8, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22511614

RESUMEN

The comet assay or single cell gel electrophoresis has proven to be a versatile and sensitive method of measuring the induction and repair of DNA damage in individual cells. However, one of the drawbacks of the assay is the bias caused by changes in the ability of cells to repair DNA damage in different cell cycle phases. Whereas the bias seems less important when G0 peripheral blood lymphocytes are studied, it might cause problems when proliferating cells are investigated. In this paper, we validate the assumption that the total comet fluorescence intensity corresponds to the position of the cell in the cell cycle and can be used to assign single cells to specific cell cycle phases. To validate the approach, we used a very homogenous blood mononuclear CD34(+) cell population in G0 phase (unstimulated) or stimulated to enter the cell cycle. An analysis of the cell cycle distribution revealed that the 15 comet intensity classes and the 100 comets usually analyzed in a typical comet experiment are sufficient to obtain a reliable cell cycle distribution comparable with the results obtained by the flow cytometry for the same cell population. The effect of the cell cycle position on the results obtained by the comet assay for proliferating and non-proliferating cell populations irradiated with 3 Gy of X-radiation is also discussed.


Asunto(s)
Ciclo Celular , Ensayo Cometa/métodos , Daño del ADN , Antígenos CD34/metabolismo , Ciclo Celular/efectos de la radiación , Daño del ADN/efectos de la radiación , Citometría de Flujo , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/efectos de la radiación , Humanos , Inmunofenotipificación , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/efectos de la radiación , Rayos X
11.
Materials (Basel) ; 15(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35683135

RESUMEN

The potential anticancer activity of different silver nanoformulations is increasingly recognized. In the present work, we use the model of 4T1 tumor in BALB/ccmdb immunocompetent mice to analyze the impact of citrate- and PEG-coated silver nanoparticles (AgNPs) on the development and metastatic potential of breast cancer. One group of mice was intragastrically administered with 1 mg/kg body weight (b.w.) of AgNPs daily from day 1 to day 14 after cancer cells implantation (total dose 14 mg/kg b.w.). The second group was intravenously administered twice with 1 or 5 mg/kg b.w. of AgNPs. A tendency for lowering tumor volume on day 21 (mean volumes 491.31, 428.88, and 386.83 mm3 for control, AgNPs-PEG, and AgNPs-citrate, respectively) and day 26 (mean volumes 903.20, 764.27, and 672.62 mm3 for control, AgNPs-PEG, and AgNPs-citrate, respectively) has been observed in mice treated intragastrically, but the effect did not reach the level of statistical significance. Interestingly, in mice treated intragastrically with citrate-coated AgNPs, the number of lung metastases was significantly lower, as compared to control mice (the mean number of metastases 18.89, 14.90, and 8.03 for control, AgNPs-PEG, and AgNPs-citrate, respectively). No effect of AgNPs treatment on the number of lung metastases was observed after intravenous administration (the mean number of metastases 12.44, 9.86, 12.88, 11.05, and 10.5 for control, AgNPs-PEG 1 mg/kg, AgNPs-PEG 5 mg/kg, AgNPs-citrate 1 mg/kg, and AgNPs-citrate 5 mg/kg, respectively). Surprisingly, inhibition of metastasis was not accompanied by changes in the expression of genes associated with epithelial-mesenchymal transition. Instead, changes in the expression of inflammation-related genes were observed. The presented results support the antitumor activity of AgNPs in vivo, but the effect was limited to the inhibition of metastasis. Moreover, our results clearly point to the importance of AgNPs coating and route of administration for its anticancer activity. Finally, our study supports the previous findings that antitumor AgNPs activity may depend on the activation of the immune system and not on the direct action of AgNPs on cancer cells.

12.
Mol Cancer Ther ; 21(12): 1835-1845, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36129807

RESUMEN

Human epidermal growth factor receptor type 2 (HER2) is overexpressed in various cancers; thus, HER2-targeting single-domain antibodies (sdAb) could offer a useful platform for radioimmunotherapy. In this study, we optimized the labeling of an anti-HER2-sdAb with the α-particle-emitter 225Ac through a DOTA-derivative. The formed radioconjugate was tested for binding affinity, specificity and internalization properties, whereas cytotoxicity was evaluated by clonogenic and DNA double-strand-breaks assays. Biodistribution studies were performed in mice bearing subcutaneous HER2pos tumors to estimate absorbed doses delivered to organs and tissues. Therapeutic efficacy and potential toxicity were assessed in HER2pos intraperitoneal ovarian cancer model and in healthy C57Bl/6 mice. [225Ac]Ac-DOTA-2Rs15d exhibited specific cell uptake and cell-killing capacity in HER2pos cells (EC50 = 3.9 ± 1.1 kBq/mL). Uptake in HER2pos lesions peaked at 3 hours (9.64 ± 1.69% IA/g), with very low accumulation in other organs (<1% IA/g) except for kidneys (11.69 ± 1.10% IA/g). α-camera imaging presented homogeneous uptake of radioactivity in tumors, although heterogeneous in kidneys, with a higher signal density in cortex versus medulla. In mice with HER2pos disseminated tumors, repeated administration of [225Ac]Ac-DOTA-2Rs15d significantly prolonged survival (143 days) compared to control groups (56 and 61 days) and to the group treated with HER2-targeting mAb trastuzumab (100 days). Histopathologic evaluation revealed signs of kidney toxicity after repeated administration of [225Ac]Ac-DOTA-2Rs15d. [225Ac]Ac-DOTA-2Rs15d efficiently targeted HER2pos cells and was effective in treatment of intraperitoneal disseminated tumors, both alone and as an add-on combination with trastuzumab, albeit with substantial signs of inflammation in kidneys. This study warrants further development of [225Ac]Ac-DOTA-2Rs15d.


Asunto(s)
Neoplasias , Anticuerpos de Dominio Único , Femenino , Animales , Humanos , Ratones , Anticuerpos de Dominio Único/química , Actinio/química , Distribución Tisular , Línea Celular Tumoral , Trastuzumab/farmacología , Trastuzumab/uso terapéutico
13.
DNA Repair (Amst) ; 104: 103136, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34044336

RESUMEN

Photodynamic therapy (PDT) is a clinically approved cancer therapy of low invasiveness. The therapeutic procedure involves administering a photosensitizing drug (PS), which is then activated with monochromatic light of a specific wavelength. The photochemical reaction produces highly toxic oxygen species. The development of resistance to PDT in some cancer cells is its main limitation. Several mechanisms are known to be involved in the development of cellular defense against cytotoxic effects of PDT, including activation of antioxidant enzymes, drug efflux pumps, degradation of PS, and overexpression of protein chaperons. Another putative factor that plays an important role in the development of resistance of cancer cells to PDT seems to be DNA repair; however, it has not been well studied so far. To explore the role of DNA repair and other potential novel mechanisms associated with the resistance to PDT in the glioblastoma cells, cells stably resistant to PDT were isolated from PDT sensitive cells following repetitive PDT cycles. Duly characterization of isolated PDT-resistant glioblastoma revealed that the resistance to PDT might be a consequence of several mechanisms, including higher repair efficiency of oxidative DNA damage and repair of DNA breaks. Higher activity of APE1 endonuclease and increased expression and activation of DNA damage kinase ATM was demonstrated in the U-87 MGR cell line, suggesting and proving that they are good targets for sensitization of resistant cells to PDT.


Asunto(s)
Daño del ADN , Reparación del ADN , Resistencia a Antineoplásicos , Glioblastoma/tratamiento farmacológico , Fotoquimioterapia , Línea Celular Tumoral , Ensayo Cometa , Roturas del ADN , ADN de Neoplasias/metabolismo , Glioblastoma/genética , Glioblastoma/fisiopatología , Humanos , Estrés Oxidativo
14.
Mutat Res ; 696(1): 16-20, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20018253

RESUMEN

Gamma-H2AX foci are sensitive and specific indicator for the induction of DNA double-strand breaks (DSBs) and an immunocytochemical assay with antibodies recognizing gamma-H2AX has become the gold standard for the detection of this type of DNA lesion. Quantification of gamma-H2AX foci can be achieved by various methods such as Western blotting, flow cytometry, visual analysis and computational analysis with a fluorescence microscope. The best sensitivity is achieved by computer analysis. Since no freeware programme for the analysis of gamma-H2AX foci exists for a PC platform, the aim of our study was to develop a simple and user-friendly public-domain software. The algorithm applied in our programme allows determination of the number of foci in a single cell, a focus intensity per cell, as well as a cell intensity. Its graphical user interface is based on a GTK+ library and the whole application can be run under a variety of operating systems, including MS Windows and Linux. The programme called FociCounter is publicly available at http://focicounter.sourceforge.net. Application of the programme was tested by analysing gamma-H2AX foci in CHO and MO59K cells irradiated in vitro with X-rays and validated by comparing the results obtained with the outcome of automated image analysis and flow cytometry.


Asunto(s)
Histonas/genética , Programas Informáticos , Algoritmos , Animales , Células CHO , Línea Celular Tumoral , Computadores , Cricetinae , Cricetulus , Roturas del ADN de Doble Cadena , Humanos , Procesamiento de Imagen Asistido por Computador , Dosis de Radiación , Traumatismos por Radiación , Rayos X
15.
Materials (Basel) ; 13(10)2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32408639

RESUMEN

The fast-growing use of nanomaterials in everyday life raises the question about the safety of their use. Unfortunately, the risks associated with the use of nanoparticles (NPs) have not yet been fully assessed. The majority of studies conducted so far at the molecular and cellular level have focused on a single-type exposure, assuming that NPs act as the only factor. In the natural environment, however, we are likely exposed to a mixture of nanoparticles, whose interactions may modulate their impact on living organisms. This study aimed to evaluate the toxicological effects caused by in vitro exposure of HepG2 cells to AgNPs in combination with AuNPs, CdTe quantum dot (QD) NPs, TiO2NPs, or SiO2NPs. The results showed that the toxicity of nanoparticle binary mixtures depended on the type and ratio of NPs used. In general, the toxicity of binary mixtures of NPs was lower than the sum of toxicities of NPs alone (protective effect).

16.
Appl Radiat Isot ; 150: 192-198, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30553541

RESUMEN

The relative biological effectiveness (RBE) values were determined for single- and mixed-ion beams containing carbon and oxygen ions. The CHO-K1 cells were irradiated with beams with the linear energy transfer (LET) values of 236-300 and 461-470 keV/µm for 12C and 16O ions, respectively. The RBE was estimated as a function of dose, survival fraction (SF) and LET. The SF was not affected by varying contributions of the constituent ions to the total mixed dose. The RBE has the same value for single-ion exposures with ions with LET 300 (12C) and 470 keV/µm (16O).


Asunto(s)
Radioterapia de Iones Pesados , Iones/uso terapéutico , Efectividad Biológica Relativa , Animales , Células CHO , Supervivencia Celular/efectos de la radiación , Cricetulus , Radioterapia de Iones Pesados/estadística & datos numéricos , Iones Pesados , Transferencia Lineal de Energía , Neoplasias/radioterapia , Oxígeno
17.
Redox Biol ; 15: 435-440, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29351884

RESUMEN

Damage to mitochondria and subsequent ROS leakage is a commonly accepted mechanism of nanoparticle toxicity. However, malfunction of mitochondria results in generation of superoxide anion radical (O2•-), which due to the relatively low chemical reactivity is rather unlikely to cause harmful effects triggered by nanoparticles. We show that treatment of HepG2 cells with silver nanoparticles (AgNPs) resulted in generation of H2O2 instead of O2•-, as measured by ROS specific mitochondrial probes. Moreover, addition of a selective iron chelator diminished AgNPs toxicity. Altogether these results suggest that O2•- generated during NPs induced mitochondrial collapse is rapidly dismutated to H2O2, which in the presence of iron ions undergoes a Fenton reaction to produce an extremely reactive hydroxyl radical (•OH). Clarification of the mechanism of NPs-dependent generation of •OH and demonstration of the crucial role of iron ions in NPs toxicity will facilitate our understanding of NPs toxicity and the design of safe nanomaterials.


Asunto(s)
Daño del ADN/efectos de los fármacos , Quelantes del Hierro/toxicidad , Nanopartículas del Metal/toxicidad , Mitocondrias/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Hep G2 , Humanos , Peróxido de Hidrógeno/metabolismo , Quelantes del Hierro/química , Mitocondrias/patología , Especies Reactivas de Oxígeno/metabolismo , Plata/química , Superóxidos/metabolismo
18.
DNA Repair (Amst) ; 69: 53-62, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30055508

RESUMEN

Cancer cells, including thyroid cancer cells, suffer from oxidative stress damaging multiple cellular targets, such as DNA and the nucleotide pool. The human MutT homologue 1 (hMTH1) controls the oxidative DNA damage load by sanitizing the nucleotide pool from the oxidized DNA precursor, 8-oxodGTP. It has previously been shown that hMTH1 is essential for cancer cell proliferation and survival, therefore hMTH1 inhibition has been proposed as a novel anticancer therapeutic strategy. Here we show that thyroid cancer cells respond to siRNA mediated hMTH1 depletion with increased DNA damage load and moderately reduced proliferation rates, but without detectable apoptosis, cell-cycle arrest or senescence. Importantly, however, hMTH1 depletion significantly reduced migration and invasion potential of the thyroid cancer cells. Accordingly, our results allow us to propose that hMTH1 may be a therapeutic target in thyroid malignancy, especially for controlling metastasis.


Asunto(s)
Daño del ADN , Enzimas Reparadoras del ADN/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Neoplasias de la Tiroides/enzimología , Línea Celular Tumoral , Movimiento Celular , Humanos , Invasividad Neoplásica , Estrés Oxidativo , Neoplasias de la Tiroides/patología
19.
Appl Radiat Isot ; 139: 304-309, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29883949

RESUMEN

Carbon and oxygen ions were accelerated simultaneously to estimate the effect of irradiation of living cells with the two different ions. This mixed ion beam was used to irradiate the CHO-K1 cells, and a survival test was performed. The type of the effect of the mixed ion beam on the cells was determined with the isobologram method, whereby survival curves for irradiations with individual ion beams were also used. An additive effect of irradiation with the two ions was found.


Asunto(s)
Carbono/uso terapéutico , Radioterapia de Iones Pesados , Oxígeno/uso terapéutico , Efectividad Biológica Relativa , Animales , Células CHO , Carbono/administración & dosificación , Carbono/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Cricetinae , Cricetulus , Relación Dosis-Respuesta en la Radiación , Transferencia Lineal de Energía , Oxígeno/administración & dosificación , Oxígeno/efectos de la radiación , Radiometría
20.
Acta Biochim Pol ; 54(1): 63-9, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17311110

RESUMEN

Sirtuins (type III histone deacetylases) are an important member of a group of enzymes that modify chromatin conformation. We investigated the role of sirtuin inhibitor, GPI 19015, in double strand break (DSB) repair in CHO-K1 wt and xrs-6 mutant cells. The latter is defective in DNA-dependent protein kinase (DNA-PK)-mediated non-homologous end-joining (D-NHEJ). DSB were estimated by the neutral comet assay and histone gammaH2AX foci formation. We observed a weaker effect of GPI 19015 treatment on the repair kinetics in CHO wt cells than in xrs6. In the latter cells the increase in DNA repair rate was most pronounced in G1 phase and practically absent in S and G2 cell cycle phases. The decrease in the number of histone gammaH2AX foci was faster in xrs6 than in CHO-K1 cells. The altered repair rate did not affect survival of X-irradiated cells. Since in G1 xrs6 cells DNA-PK-dependent non-homologous end-joining, D-NHEJ, does not operate, these results indicate that inhibition of sirtuins modulates DNA-PK-independent (backup) non-homologous end-joining, B-NHEJ, to a greater extent than the other DSB repair system, D-NHEJ.


Asunto(s)
Daño del ADN , Reparación del ADN , Sirtuinas/antagonistas & inhibidores , Animales , Células CHO , Línea Celular , Cricetinae , Cricetulus , Histona Desacetilasa 2 , Inhibidores de Histona Desacetilasas , Cinética , Mutación , Proteínas Represoras/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA