Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Eur J Clin Invest ; 47(1): 19-29, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27805735

RESUMEN

BACKGROUND: Patients with diabetes are at a high risk of developing both micro- and macrovascular disease. Hyperglycaemia seems to be the main factor in the pathogenesis of diabetic cardiomyopathy, often based on increased oxidative stress. Carvedilol, a ß-adrenergic blocker, has intrinsic antioxidant properties and was previously described to be effective in the protection of cardiac mitochondria against oxidative stress. The objective of this study was to evaluate the effect of carvedilol on hyperglycaemia-induced oxidative damage and mitochondrial abnormalities in cardiac and skeletal muscle in streptozotocin-treated rats. MATERIALS AND METHODS: Body mass, blood glucose, the level of protein carbonylation, caspase-9- and caspase-3-like activities, mitochondrial proteins, the status of antioxidant defence system and stress-related proteins were evaluated in streptozotocin vs streptozotocin + carvedilol (1 mg/kg/day)-treated rats. RESULTS: The results showed that carvedilol decreased blood glucose in streptozotocin-treated animals. Content of catalase in the heart and SOD2, SOD1 and catalase in skeletal muscle were increased by carvedilol treatment in streptozotocin-treated animals. At this particular time point, streptozotocin-induced hyperglycaemia did not cause caspase activation or increase in protein carbonylation status. The data showed that carvedilol increased the level of antioxidant enzymes, what may contribute to preserve cell redox balance during hyperglycaemia. We also showed here for the first time that carvedilol effects on streptozotocin-treated rats are tissue dependent, with a more predominant effect on skeletal muscle. CONCLUSIONS: Based on data showing modulation of the antioxidant network in the heart, carvedilol may be beneficial in diabetic patients without advanced disease complications, delaying their progression.


Asunto(s)
Antagonistas Adrenérgicos beta/farmacología , Carbazoles/farmacología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Musculares/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Propanolaminas/farmacología , Animales , Antioxidantes , Glucemia/metabolismo , Carvedilol , Caspasa 3/efectos de los fármacos , Caspasa 3/metabolismo , Catalasa/efectos de los fármacos , Catalasa/metabolismo , Modelos Animales de Enfermedad , Masculino , Mitocondrias Cardíacas/metabolismo , Mitocondrias Musculares/metabolismo , Ratas , Ratas Wistar , Superóxido Dismutasa/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/efectos de los fármacos , Superóxido Dismutasa-1/metabolismo
2.
Arch Toxicol ; 90(7): 1669-84, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26318906

RESUMEN

The adaptor protein p66Shc modulates cellular redox status integrating oxidative stress with mitochondrial stress responses. Upon oxidative stress, p66Shc is translocated to mitochondria or mitochondria-associated membranes in a multi-step process, resulting in locally increased reactive oxygen species production. This signaling pathway is believed to be important in the context of drug-induced organ toxicity. The use of anthracyclines as anticancer agents is limited due to a dose-dependent and cumulative toxicity resulting in cardiomyopathy. Treatment with the anthracycline doxorubicin (DOX) results in a dose-dependent and cumulative cardiotoxicity which is mediated, at least in part, by increased oxidative stress. In the present study, we investigated for the first time whether p66Shc signaling is activated during DOX treatment of the rat cardiomyoblast H9c2 cell line. We further tested whether the transcriptional factor FoxO3a, which activates target genes responsible for apoptosis and cell cycle arrest, is also involved in p66Shc-dependent redox signaling pathway. Our results suggest that DOX treatment induces p66Shc protein up-regulation specifically in nuclear fractions. Increased nuclear expression of FoxO3a was also detected in H9c2 cells after DOX treatment. Treatment with the antioxidant and protein kinase C (PKC-ß) inhibitor hispidin decreased DOX-induced activation of caspase 9 and p66Shc alterations. Taking together, we hypothesize that p66Shc signaling is involved in the activation of stress/toxicity responses elicited by the treatment of H9c2 cells with DOX. Hence, the selective inhibition of this redox pathway may be a promising therapeutic approach to circumvent DOX cardiotoxicity.


Asunto(s)
Antibióticos Antineoplásicos/toxicidad , Doxorrubicina/toxicidad , Mioblastos Cardíacos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo , Animales , Cardiotoxicidad , Técnicas de Cultivo de Célula , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Proteína Forkhead Box O3/metabolismo , Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Mioblastos Cardíacos/metabolismo , Transporte de Proteínas , Ratas , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/genética
3.
Biochim Biophys Acta ; 1837(8): 1247-56, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24769419

RESUMEN

The mitochondrial oxidative phosphorylation (OXPHOS) system consists of four electron transport chain (ETC) complexes (CI-CIV) and the FoF1-ATP synthase (CV), which sustain ATP generation via chemiosmotic coupling. The latter requires an inward-directed proton-motive force (PMF) across the mitochondrial inner membrane (MIM) consisting of a proton (ΔpH) and electrical charge (Δψ) gradient. CI actively participates in sustaining these gradients via trans-MIM proton pumping. Enigmatically, at the cellular level genetic or inhibitor-induced CI dysfunction has been associated with Δψ depolarization or hyperpolarization. The cellular mechanism of the latter is still incompletely understood. Here we demonstrate that chronic (24h) CI inhibition in HEK293 cells induces a proton-based Δψ hyperpolarization in HEK293 cells without triggering reverse-mode action of CV or the adenine nucleotide translocase (ANT). Hyperpolarization was associated with low levels of CII-driven O2 consumption and prevented by co-inhibition of CII, CIII or CIV activity. In contrast, chronic CIII inhibition triggered CV reverse-mode action and induced Δψ depolarization. CI- and CIII-inhibition similarly reduced free matrix ATP levels and increased the cell's dependence on extracellular glucose to maintain cytosolic free ATP. Our findings support a model in which Δψ hyperpolarization in CI-inhibited cells results from low activity of CII, CIII and CIV, combined with reduced forward action of CV and ANT.


Asunto(s)
Respiración de la Célula/genética , Complejo I de Transporte de Electrón/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Complejo I de Transporte de Electrón/química , Complejo II de Transporte de Electrones/química , Complejo II de Transporte de Electrones/genética , Complejo III de Transporte de Electrones/química , Complejo III de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/genética , Células HEK293 , Humanos , Translocasas Mitocondriales de ADP y ATP/química , Translocasas Mitocondriales de ADP y ATP/genética , Membranas Mitocondriales/química , Fosforilación Oxidativa
4.
Biochim Biophys Acta Bioenerg ; 1861(8): 148213, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32335026

RESUMEN

Mutations in NDUFS4, which encodes an accessory subunit of mitochondrial oxidative phosphorylation (OXPHOS) complex I (CI), induce Leigh syndrome (LS). LS is a poorly understood pediatric disorder featuring brain-specific anomalies and early death. To study the LS pathomechanism, we here compared OXPHOS proteomes between various Ndufs4-/- mouse tissues. Ndufs4-/- animals displayed significantly lower CI subunit levels in brain/diaphragm relative to other tissues (liver/heart/kidney/skeletal muscle), whereas other OXPHOS subunit levels were not reduced. Absence of NDUFS4 induced near complete absence of the NDUFA12 accessory subunit, a 50% reduction in other CI subunit levels, and an increase in specific CI assembly factors. Among the latter, NDUFAF2 was most highly increased. Regarding NDUFS4, NDUFA12 and NDUFAF2, identical results were obtained in Ndufs4-/- mouse embryonic fibroblasts (MEFs) and NDUFS4-mutated LS patient cells. Ndufs4-/- MEFs contained active CI in situ but blue-native-PAGE highlighted that NDUFAF2 attached to an inactive CI subcomplex (CI-830) and inactive assemblies of higher MW. In NDUFA12-mutated LS patient cells, NDUFA12 absence did not reduce NDUFS4 levels but triggered NDUFAF2 association to active CI. BN-PAGE revealed no such association in LS patient fibroblasts with mutations in other CI subunit-encoding genes where NDUFAF2 was attached to CI-830 (NDUFS1, NDUFV1 mutation) or not detected (NDUFS7 mutation). Supported by enzymological and CI in silico structural analysis, we conclude that absence of NDUFS4 induces near complete absence of NDUFA12 but not vice versa, and that NDUFAF2 stabilizes active CI in Ndufs4-/- mice and LS patient cells, perhaps in concert with mitochondrial inner membrane lipids.


Asunto(s)
Complejo I de Transporte de Electrón/deficiencia , Complejo I de Transporte de Electrón/genética , Eliminación de Gen , Enfermedad de Leigh/genética , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , NADPH Deshidrogenasa/metabolismo , Animales , Fibroblastos/metabolismo , Técnicas de Inactivación de Genes , Humanos , Enfermedad de Leigh/metabolismo , Ratones , Fosforilación Oxidativa , Estabilidad Proteica
5.
Food Chem Toxicol ; 115: 1-12, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29448087

RESUMEN

Mitochondrial dysfunction caused by cigarette smoke is involved in the oxidative stress-induced pathology of airway diseases. Reducing the levels of harmful and potentially harmful constituents by heating rather than combusting tobacco may reduce mitochondrial changes that contribute to oxidative stress and cell damage. We evaluated mitochondrial function and oxidative stress in human bronchial epithelial cells (BEAS 2B) following 1- and 12-week exposures to total particulate matter (TPM) from the aerosol of a candidate modified-risk tobacco product, the Tobacco Heating System 2.2 (THS2.2), in comparison with TPM from the 3R4F reference cigarette. After 1-week exposure, 3R4F TPM had a strong inhibitory effect on mitochondrial basal and maximal oxygen consumption rates compared to TPM from THS2.2. Alterations in oxidative phosphorylation were accompanied by increased mitochondrial superoxide levels and increased levels of oxidatively damaged proteins in cells exposed to 7.5 µg/mL of 3R4F TPM or 150 µg/mL of THS2.2 TPM, while cytosolic levels of reactive oxygen species were not affected. In contrast, the 12-week exposure indicated adaptation of BEAS-2B cells to long-term stress. Together, the findings indicate that 3R4F TPM had a stronger effect on oxidative phosphorylation, gene expression and proteins involved in oxidative stress than TPM from the candidate modified-risk tobacco product THS2.2.


Asunto(s)
Bronquios/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Nicotiana/efectos adversos , Material Particulado/efectos adversos , Productos de Tabaco/efectos adversos , Bronquios/citología , Bronquios/metabolismo , Línea Celular , Células Epiteliales/citología , Humanos , Exposición por Inhalación , Mitocondrias/genética , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Humo/efectos adversos , Humo/análisis
6.
Mitochondrion ; 37: 62-79, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28739512

RESUMEN

The mitochondrial respiratory chain, and in particular, complex I, is a major source of reactive oxygen species (ROS) in cells. Elevated levels of ROS are associated with an imbalance between the rate of ROS formation and the capacity of the antioxidant defense system. Increased ROS production may lead to oxidation of DNA, lipids and proteins and thus can affect fundamental cellular processes. The aim of this study was to investigate the magnitude of intracellular oxidative stress in fibroblasts of patients with Leigh syndrome with defined mutations in complex I. Moreover, we hypothesized that activation of the p66Shc protein (phosphorylation of p66Shc at Ser36 by PKCß), being part of the oxidative stress response pathway, is partially responsible for the increased ROS production in cells with dysfunctional complex I. Characterization of bioenergetic parameters and ROS production showed that the cellular model of Leigh syndrome is described by increased intracellular oxidative stress and oxidative damage to DNA and proteins, which correlate with increased p66Shc phosphorylation at Ser36. Treatment of patients' fibroblasts with hispidin (an inhibitor of the protein kinase PKCß), in addition to decreasing ROS production and intracellular oxidative stress, resulted in restoration of complex I activity.


Asunto(s)
Fibroblastos/metabolismo , Enfermedad de Leigh/fisiopatología , Mitocondrias/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/antagonistas & inhibidores , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo , Células Cultivadas , Complejo I de Transporte de Electrón/genética , Inhibidores Enzimáticos/metabolismo , Humanos , Mutación , Pironas/metabolismo
7.
Methods Enzymol ; 542: 243-62, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24862270

RESUMEN

Mitochondria are considered one of the main sources of reactive oxygen species (ROS). The overgeneration of ROS can evoke an intracellular state of oxidative stress, leading to permanent cell damage. Thus, the intracellular accumulation of ROS may not only disrupt the functions of specific tissues and organs but also lead to the premature death of the entire organism. Less severe increases in ROS levels may lead to the nonlethal oxidation of fundamental cellular components, such as proteins, phospholipids, and DNA, hence exerting a mutagenic effect that promotes oncogenesis and tumor progression. Here, we describe the use of chemical probes for the rapid detection of ROS in intact and permeabilized adherent cells by fluorescence microscopy and fluorometry. Moreover, after discussing the limitations described in the literature for the fluorescent probes presented herein, we recommend methods to assess the production of specific ROS in various fields of investigation, including the study of oncometabolism.


Asunto(s)
Fluorometría/métodos , Microscopía Fluorescente/métodos , Especies Reactivas de Oxígeno/análisis , Animales , Etidio/análogos & derivados , Etidio/metabolismo , Fluorenos/metabolismo , Colorantes Fluorescentes/metabolismo , Humanos , Mitocondrias/metabolismo , Compuestos Organofosforados/metabolismo , Oxazinas , Permeabilidad , Fenantridinas/metabolismo , Proteínas/análisis , Especies Reactivas de Oxígeno/metabolismo
8.
Nat Protoc ; 9(2): 312-22, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24434800

RESUMEN

Dynamic interplay between intracellular organelles requires a particular functional apposition of membrane structures. The organelles involved come into close contact, but do not fuse, thereby giving rise to notable microdomains; these microdomains allow rapid communication between the organelles. Plasma membrane-associated membranes (PAMs), which are microdomains of the plasma membrane (PM) interacting with the endoplasmic reticulum (ER) and mitochondria, are dynamic structures that mediate transport of proteins, lipids, ions and metabolites. These structures have gained much interest lately owing to their roles in many crucial cellular processes. Here we provide an optimized protocol for the isolation of PAM, PM and ER fractions from rat liver that is based on a series of differential centrifugations, followed by the fractionation of crude PM on a discontinuous sucrose gradient. The procedure requires ∼8-10 h, and it can be easily modified and adapted to other tissues and cell types.


Asunto(s)
Fraccionamiento Celular/métodos , Membrana Celular/fisiología , Retículo Endoplásmico/fisiología , Técnicas de Preparación Histocitológica/métodos , Hígado/citología , Animales , Centrifugación/métodos , Ratas
9.
PLoS One ; 9(8): e104964, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25119968

RESUMEN

Nibrin plays an important role in the DNA damage response (DDR) and DNA repair. DDR is a crucial signaling pathway in apoptosis and senescence. To verify whether truncated nibrin (p70), causing Nijmegen Breakage Syndrome (NBS), is involved in DDR and cell fate upon DNA damage, we used two (S4 and S3R) spontaneously immortalized T cell lines from NBS patients, with the founding mutation and a control cell line (L5). S4 and S3R cells have the same level of p70 nibrin, however p70 from S4 cells was able to form more complexes with ATM and BRCA1. Doxorubicin-induced DDR followed by cell senescence could only be observed in L5 and S4 cells, but not in the S3R ones. Furthermore the S3R cells only underwent cell death, but not senescence after doxorubicin treatment. In contrary to doxorubicin treatment, cells from all three cell lines were able to activate the DDR pathway after being exposed to γ-radiation. Downregulation of nibrin in normal human vascular smooth muscle cells (VSMCs) did not prevent the activation of DDR and induction of senescence. Our results indicate that a substantially reduced level of nibrin or its truncated p70 form is sufficient to induce DNA-damage dependent senescence in VSMCs and S4 cells, respectively. In doxorubicin-treated S3R cells DDR activation was severely impaired, thus preventing the induction of senescence.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Senescencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Síndrome de Nijmegen/tratamiento farmacológico , Proteínas Nucleares/metabolismo , Linfocitos T/efectos de los fármacos , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína BRCA1/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/genética , Línea Celular , Reparación del ADN/efectos de los fármacos , Regulación hacia Abajo , Humanos , Mutación , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Síndrome de Nijmegen/genética , Síndrome de Nijmegen/metabolismo , Síndrome de Nijmegen/patología , Proteínas Nucleares/genética , Linfocitos T/metabolismo , Linfocitos T/patología
10.
Cell Cycle ; 12(4): 674-83, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23343770

RESUMEN

The term "mitochondrial permeability transition" (MPT) refers to an abrupt increase in the permeability of the inner mitochondrial membrane to low molecular weight solutes. Due to osmotic forces, MPT is paralleled by a massive influx of water into the mitochondrial matrix, eventually leading to the structural collapse of the organelle. Thus, MPT can initiate mitochondrial outer membrane permeabilization (MOMP), promoting the activation of the apoptotic caspase cascade as well as of caspase-independent cell death mechanisms. MPT appears to be mediated by the opening of the so-called "permeability transition pore complex" (PTPC), a poorly characterized and versatile supramolecular entity assembled at the junctions between the inner and outer mitochondrial membranes. In spite of considerable experimental efforts, the precise molecular composition of the PTPC remains obscure and only one of its constituents, cyclophilin D (CYPD), has been ascribed with a crucial role in the regulation of cell death. Conversely, the results of genetic experiments indicate that other major components of the PTPC, such as voltage-dependent anion channel (VDAC) and adenine nucleotide translocase (ANT), are dispensable for MPT-driven MOMP. Here, we demonstrate that the c subunit of the FO ATP synthase is required for MPT, mitochondrial fragmentation and cell death as induced by cytosolic calcium overload and oxidative stress in both glycolytic and respiratory cell models. Our results strongly suggest that, similar to CYPD, the c subunit of the FO ATP synthase constitutes a critical component of the PTPC.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Neuronas/metabolismo , Animales , Animales Recién Nacidos , Apoptosis , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Peptidil-Prolil Isomerasa F , Ciclofilinas/química , Ciclofilinas/metabolismo , Células HeLa , Humanos , Mitocondrias/química , Translocasas Mitocondriales de ADP y ATP/química , Translocasas Mitocondriales de ADP y ATP/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Membranas Mitocondriales/química , Poro de Transición de la Permeabilidad Mitocondrial , ATPasas de Translocación de Protón Mitocondriales/química , Neuronas/citología , Estrés Oxidativo , Cultivo Primario de Células , Ratas , Canales Aniónicos Dependientes del Voltaje/química , Canales Aniónicos Dependientes del Voltaje/metabolismo
11.
Int J Biochem Cell Biol ; 45(1): 114-22, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22776741

RESUMEN

Diabetes mellitus is a chronic disease caused by a deficiency in the production of insulin and/or by the effects of insulin resistance. Insulin deficiency leads to hyperglycemia which is the major initiator of diabetic cardiovascular complications escalating with time and driven by many complex biochemical and molecular processes. Four hypotheses, which propose mechanisms of diabetes-associated pathophysiology, are currently considered. Cardiovascular impairment may be caused by an increase in polyol pathway flux, by intracellular advanced glycation end-products formation or increased flux through the hexosamine pathway. The latter of these mechanisms involves activation of the protein kinase C. Cellular and mitochondrial metabolism alterations observed in the course of diabetes are partially associated with an excessive production of reactive oxygen species (ROS). Among many processes and factors involved in ROS production, the 66 kDa isoform of the growth factor adaptor shc (p66Shc protein) is of particular interest. This protein plays a key role in the control of mitochondria-dependent oxidative balance thus it involvement in diabetic complications and other oxidative stress based pathologies is recently intensively studied. In this review we summarize the current understanding of hyperglycemia induced cardiac mitochondrial dysfunction with an emphasis on the oxidative stress and p66Shc protein. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy.


Asunto(s)
Hiperglucemia/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocardio/metabolismo , Estrés Oxidativo/fisiología , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Animales , Humanos , Hiperglucemia/patología , Miocardio/patología , Especies Reactivas de Oxígeno , Transducción de Señal
12.
Int J Biochem Cell Biol ; 45(1): 141-50, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22885148

RESUMEN

p66Shc is an adaptor protein involved in cell proliferation and differentiation that undergoes phosphorylation at Ser36 in response to oxidative stimuli, consequently inducing a burst of reactive oxygen species (ROS), mitochondrial disruption and apoptosis. Its role during several pathologies suggests that p66Shc mitochondrial signalling can perpetuate a primary mitochondrial defect, thus contributing to the pathophysiology of that condition. Here, we show that in the fibroblasts of neuropathy, ataxia and retinitis pigmentosa (NARP) patients, the p66Shc phosphorylation pathway is significantly induced in response to intracellular oxidative stress related to disrupted ATP synthase activity and mitochondrial membrane hyperpolarisation. We postulate that the increased phosphorylation of p66Shc at Ser36 is partially responsible for further increasing ROS production, resulting in oxidative damage of proteins. Oxidative stress and p66Shc phosphorylation at Ser36 may be mitigated by antioxidant administration or the use of a p66Shc phosphorylation inhibitor. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy.


Asunto(s)
Fibroblastos/metabolismo , Miopatías Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Estrés Oxidativo/fisiología , Retinitis Pigmentosa/metabolismo , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Apoptosis/fisiología , Humanos , Mitocondrias/enzimología , Mitocondrias/metabolismo , Mitocondrias/patología , Miopatías Mitocondriales/genética , Miopatías Mitocondriales/patología , Fosforilación Oxidativa , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Proteínas Adaptadoras de la Señalización Shc/genética , Transducción de Señal , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA