Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Nat Prod ; 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39427253

RESUMEN

Microcystins, a large family of nonribosomal cyclic heptapeptides known for their hepatotoxicity, are among the best-studied cyanobacterial toxins. Recently, they have been discussed as leads for the development of anticancer drug substances. Their main mode-of-action is inhibition of the eukaryotic serine/threonine protein phosphatases 1 and 2A. Unlike many cytotoxins that can cross cell membranes by passive diffusion, microcystins depend on active uptake via organic anion transporting polypeptides 1B1 or 1B3. Both phosphatase inhibition and transportability strongly depend on the structure of the individual microcystin. Here, we present how chemical modification of positions 2 and 4 of the microcystin core structure can alter these two properties. Aiming to reduce transportability and increase phosphatase inhibition, we used pharmacophore modeling to investigate the phosphatase inhibition potential of microcystins derivatized with small molecules containing a variety of functional groups. The respective derivatives were synthesized using click chemistry. We discovered that some derivatized microcystins can address a yet undescribed subpocket of the protein phosphatase 1. The derivatized microcystins were tested for phosphatase 1 inhibition and cytotoxicity on transporter-expressing cell lines, revealing that target inhibition and transportability of microcystins can independently be influenced by the physicochemical properties, especially of the residue located in position 2 of the microcystin. Derivatization with small acids or amino acids resulted in microcystins with a favorable ratio of inhibition to transportability, making these derivatives potentially suitable for drug development.

2.
Molecules ; 29(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38792050

RESUMEN

CYP2A7 is one of the most understudied human cytochrome P450 enzymes and its contributions to either drug metabolism or endogenous biosynthesis pathways are not understood, as its only known enzymatic activities are the conversions of two proluciferin probe substrates. In addition, the CYP2A7 gene contains four single-nucleotide polymorphisms (SNPs) that cause missense mutations and have minor allele frequencies (MAFs) above 0.5. This means that the resulting amino acid changes occur in the majority of humans. In a previous study, we employed the reference standard sequence (called CYP2A7*1 in P450 nomenclature). For the present study, we created another CYP2A7 sequence that contains all four amino acid changes (Cys311, Glu169, Gly479, and Arg274) and labeled it CYP2A7-WT. Thus, it was the aim of this study to identify new substrates and inhibitors of CYP2A7 and to compare the properties of CYP2A7-WT with CYP2A7*1. We found several new proluciferin probe substrates for both enzyme variants (we also performed in silico studies to understand the activity difference between CYP2A7-WT and CYP2A7*1 on specific substrates), and we show that while they do not act on the standard CYP2A6 substrates nicotine, coumarin, or 7-ethoxycoumarin, both can hydroxylate diclofenac (as can CYP2A6). Moreover, we found ketoconazole, 1-benzylimidazole, and letrozole to be CYP2A7 inhibitors.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas , Inhibidores Enzimáticos , Humanos , Hidrocarburo de Aril Hidroxilasas/antagonistas & inhibidores , Hidrocarburo de Aril Hidroxilasas/genética , Hidrocarburo de Aril Hidroxilasas/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Polimorfismo de Nucleótido Simple , Especificidad por Sustrato
3.
J Nat Prod ; 86(11): 2502-2513, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-37939299

RESUMEN

2-Alkylquinolones are a class of microbial natural products primarily produced in the Pseudomonas and Burkholderia genera that play a key role in modulating quorum sensing. Bacterial alkylquinolones were synthesized and then subjected to oxidative biotransformation using human cytochrome P450 enzyme CYP4F11, heterologously expressed in the fission yeast Schizosaccharomyces pombe. This yielded a range of hydroxylated and carboxylic acid derivatives which had undergone ω-oxidation of the 2-alkyl chain, the structures of which were determined by analysis of NMR and MS data. Oxidation efficiency depended on chain length, with a chain length of eight or nine carbon atoms proving optimal for high yields. Homology modeling suggested that Glu233 was relevant for binding, due to the formation of a hydrogen bond from the quinolone nitrogen to Glu233, and in this position only the longer alkyl chains could come close enough to the heme moiety for effective oxidation. In addition to the direct oxidation products, a number of esters were also isolated, which was attributed to the action of endogenous yeast enzymes on the newly formed ω-hydroxy-alkylquinolones. ω-Oxidation of the alkyl chain significantly reduced the antimicrobial and antibiofilm activity of the quinolones.


Asunto(s)
Bacterias , Sistema Enzimático del Citocromo P-450 , Humanos , Oxidación-Reducción , Sistema Enzimático del Citocromo P-450/metabolismo , Familia 4 del Citocromo P450/metabolismo
4.
Bioorg Chem ; 131: 106330, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36565673

RESUMEN

Cytochrome P450 enzymes (CYPs) are one of the most important classes of oxidative enzymes in the human body, carrying out metabolism of various exogenous and endogenous substrates. In order to expand the knowledge of these enzymes' specificity and to obtain new natural product derivatives, CYP4F11, a cytochrome P450 monooxygenase, was used in the biotransformation of dialkylresorcinols 1 and 2, a pair of antibiotic microbial natural products. This investigation resulted in four biotransformation products including two oxidative products: a hydroxylated derivative (3) and a carboxylic acid derivative (4). In addition, acetylated (5) and esterified products (6) were isolated, formed by further metabolism by endogenous yeast enzymes. Oxidative transformations were highly regioselective, and took place exclusively at the ω-position of the C-5 alkyl chain. Homology modeling studies revealed that optimal hydrogen bonding between 2 and the enzyme can only be established with the C-5 alkyl chain pointing towards the heme. The closely-related CYP4F12 was not capable of oxidizing the dialkylresorcinol 2. Modeling experiments rationalize these differences by the different shapes of the binding pockets with respect to the non-oxidized alkyl chain. Antimicrobial testing indicated that the presence of polar groups on the side-chains reduces the antibiotic activity of the dialkylresorcinols.


Asunto(s)
Antibacterianos , Sistema Enzimático del Citocromo P-450 , Resorcinoles , Humanos , Antibacterianos/metabolismo , Biotransformación , Sistema Enzimático del Citocromo P-450/metabolismo , Oxidación-Reducción , Resorcinoles/metabolismo
5.
Arch Pharm (Weinheim) ; 356(12): e2300387, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37806764

RESUMEN

Fingolimod, the prodrug of fingolimod-1-phosphate (F1P), was the first sphingosine-1-phosphate receptor (S1PR) modulator approved for multiple sclerosis. F1P unselectively targets all five S1PR subtypes. While agonism (functional antagonism via receptor internalization) at S1PR1 leads to the desired immune modulatory effects, agonism at S1PR3 is associated with cardiac adverse effects. This motivated the development of S1PR3 -sparing compounds and led to a second generation of S1PR1,5 -selective ligands like siponimod and ozanimod. Our method combines molecular dynamics simulations and three-dimensional pharmacophores (dynophores) and enables the elucidation of S1PR subtype-specific binding site characteristics, visualizing also subtle differences in receptor-ligand interactions. F1P and the endogenous ligand sphingosine-1-phosphate bind to the orthosteric pocket of all S1PRs, but show different binding mode dynamics, uncovering potential starting points for the development of subtype-specific ligands. Our study contributes to the mechanistic understanding of the selectivity profile of approved drugs like ozanimod and siponimod and pharmaceutical tool compounds like CYM5541.


Asunto(s)
Clorhidrato de Fingolimod , Receptores de Lisoesfingolípidos , Receptores de Esfingosina-1-Fosfato , Receptores de Lisoesfingolípidos/metabolismo , Ligandos , Relación Estructura-Actividad
6.
Molecules ; 28(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36677775

RESUMEN

The natural product Salvinorin A (SalA) was the first nitrogen-lacking agonist discovered for the opioid receptors and exhibits high selectivity for the kappa opioid receptor (KOR) turning SalA into a promising analgesic to overcome the current opioid crisis. Since SalA's suffers from poor pharmacokinetic properties, particularly the absence of gastrointestinal bioavailability, fast metabolic inactivation, and subsequent short duration of action, the rational design of new tailored analogs with improved clinical usability is highly desired. Despite being known for decades, the binding mode of SalA within the KOR remains elusive as several conflicting binding modes of SalA were proposed hindering the rational design of new analgesics. In this study, we rationally determined the binding mode of SalA to the active state KOR by in silico experiments (docking, molecular dynamics simulations, dynophores) in the context of all available mutagenesis studies and structure-activity relationship (SAR) data. To the best of our knowledge, this is the first comprehensive evaluation of SalA's binding mode since the determination of the active state KOR crystal structure. SalA binds above the morphinan binding site with its furan pointing toward the intracellular core while the C2-acetoxy group is oriented toward the extracellular loop 2 (ECL2). SalA is solely stabilized within the binding pocket by hydrogen bonds (C210ECL2, Y3127.35, Y3137.36) and hydrophobic contacts (V1182.63, I1393.33, I2946.55, I3167.39). With the disruption of this interaction pattern or the establishment of additional interactions within the binding site, we were able to rationalize the experimental data for selected analogs. We surmise the C2-substituent interactions as important for SalA and its analogs to be experimentally active, albeit with moderate frequency within MD simulations of SalA. We further identified the non-conserved residues 2.63, 7.35, and 7.36 responsible for the KOR subtype selectivity of SalA. We are confident that the elucidation of the SalA binding mode will promote the understanding of KOR activation and facilitate the development of novel analgesics that are urgently needed.


Asunto(s)
Diterpenos de Tipo Clerodano , Receptores Opioides kappa , Humanos , Receptores Opioides kappa/metabolismo , Diterpenos de Tipo Clerodano/química , Receptores Opioides , Analgésicos , Analgésicos Opioides/química
7.
Molecules ; 28(20)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37894685

RESUMEN

The aim of this study was to develop and optimize a chiral HPLC-MS/MS method for quantitative analysis of (R)-/(S)-salbutamol and (R)-/(S)-salbutamol-4'-O-sulfate in human urine to allow for bioanalytical quantitation of the targeted analytes and investigations of stereoselectivity in the sulfonation pathway of human phase Ⅱ metabolism. For analytical method development, a systematic screening of columns and mobile phases to develop a separation via enantiomerically selective high performance liquid chromatography was performed. Electrospray ionization settings were optimized via multiple-step screening and a full factorial design-of-experiment. Both approaches were performed matrix-assisted and the predicted values were compared. The full factorial design was superior in terms of prediction power and knowledge generation. Performing a longitudinal excretion study in one healthy volunteer allowed for the calculation of excretion rates for all four targeted analytes. For this proof-of-concept, either racemic salbutamol or enantiopure levosalbutamol was administered perorally or via inhalation, respectively. A strong preference for sulfonation of (R)-salbutamol for inhalation and peroral application was found in in vivo experiments. In previous studies phenol sulfotransferase 1A3 was described to be mainly responsible for salbutamol sulfonation in humans. Thus, in vitro and in silico investigations of the stereoselectivity of sulfotransferase 1A3 complemented the study and confirmed these findings.


Asunto(s)
Albuterol , Espectrometría de Masas en Tándem , Humanos , Albuterol/análisis , Albuterol/química , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Levalbuterol , Administración por Inhalación , Estereoisomerismo
8.
J Nat Prod ; 85(10): 2255-2265, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36107719

RESUMEN

Screening for biofilm inhibition by purified natural compounds is difficult due to compounds' chemical diversity and limited commercial availability, combined with time- and cost-intensiveness of the laboratory process. In silico prediction of chemical and biological properties of molecules is a widely used technique when experimental data availability is of concern. At the same time, the performance of predictive models directly depends on the amount and quality of experimental data. Driven by the interest in developing a model for prediction of the antibiofilm effect of phenolic natural compounds such as flavonoids, we performed experimental assessment of antibiofilm activity of 320 compounds from this subset of chemicals. The assay was performed once on two Escherichia coli strains on agar in 24-well microtiter plates. The inhibition was assessed visually by detecting morphological changes in macrocolonies. Using the data obtained, we subsequently trained a Bayesian logistic regression model for prediction of biofilm inhibition, which was combined with a similarity-based method in order to increase the overall sensitivity (at the cost of accuracy). The quality of the predictions was subsequently validated by experimental assessment in three independent experiments with two resistant E. coli strains of 23 compounds absent in the initial data set. The validation demonstrated that the model may successfully predict the targeted effect as compared to the baseline accuracy. Using a randomly selected database of commercially available natural phenolics, we obtained approximately 6.0% of active compounds, whereas using our prediction-based substance selection, the percentage of phenolics found to be active increased to 34.8%.


Asunto(s)
Biopelículas , Escherichia coli , Teorema de Bayes , Fenoles/farmacología
9.
J Nat Prod ; 85(11): 2603-2609, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36327116

RESUMEN

The secondary metabolite pseudopyronine B, isolated from Pseudomonas mosselii P33, was biotransformed by human P450 enzymes, heterologously expressed in the fission yeast Schizosaccharomyces pombe. Small-scale studies confirmed that both CYP4F2 and CYP4F3A were capable of oxidizing the substrate, with the former achieving a higher yield. In larger-scale studies using CYP4F2, three new oxidation products were obtained, the structures of which were elucidated by UV-vis, 1D and 2D NMR, and HR-MS spectroscopy. These corresponded to hydroxylated, carboxylated, and ester derivatives (1-3) of pseudopyronine B, all of which had been oxidized exclusively at the ω-position of the C-6 alkyl chain. In silico homology modeling experiments highlighted key interactions between oxygen atoms of the pyrone ring and two serine residues and a histidine residue of CYP4F2, which hold the substrate in a suitable orientation for oxidation at the terminus of the C-6 alkyl chain. Additional modeling studies with all three pseudopyronines revealed that the seven-carbon alkyl chain of pseudopyronine B was the perfect length for oxidation, with the terminal carbon lying close to the heme iron. The antibacterial activity of the substrates and three oxidation products was also assessed, revealing that oxidation at the ω-position removes all antimicrobial activity. This study both increases the range of known substrates for human CYF4F2 and CYP4F3A enzymes and demonstrates their utility in producing additional natural product derivatives.


Asunto(s)
Antibacterianos , Sistema Enzimático del Citocromo P-450 , Pironas , Humanos , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacología , Biotransformación , Sistema Enzimático del Citocromo P-450/metabolismo , Familia 4 del Citocromo P450/metabolismo , Hidroxilación , Oxidación-Reducción , Pironas/química , Pironas/metabolismo , Pironas/farmacología , Schizosaccharomyces/enzimología
10.
Xenobiotica ; 52(4): 413-425, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35582917

RESUMEN

1. Olanzapine is an atypical antipsychotic primarily used to treat schizophrenia and bipolar disorder. An intronic single nucleotide polymorphism (SNP) that highly significantly predicts increased olanzapine clearance (rs472660) was previously identified in the CYP3A43 gene, which encodes a cytochrome P450 enzyme. But until now there was no experimental evidence for the metabolism of olanzapine by the CYP3A43 enzyme.2. In the present study we provide this evidence, together with a thorough analysis of olanzapine metabolism by all human CYP3A enzymes. We also rationalise our findings by molecular docking experiments. Moreover, we describe the activities of several CYP3A43 mutants and present the first enzymatic activity data for the CYP3A43.3 variant; with respect to prostate cancer, this polymorphic variant is associated with both increased risk and increased mortality. The catalytic properties of the wild type enzyme and the tumour mutant were analysed by molecular dynamics simulations, which fit very well with the observed experimental results.3. Our findings suggest that the SNP rs472660 likely causes an increased CYP3A43 expression level and demonstrate that, depending on the substrate under study, the tumour mutant CYP3A43.3 can have increased activity in comparison to the wild type enzyme CYP3A43.1.


Asunto(s)
Antipsicóticos , Antipsicóticos/uso terapéutico , Benzodiazepinas , Citocromo P-450 CYP3A/genética , Sistema Enzimático del Citocromo P-450/genética , Humanos , Masculino , Simulación del Acoplamiento Molecular , Olanzapina
11.
Int J Mol Sci ; 23(13)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35806479

RESUMEN

Propranolol is a competitive non-selective beta-receptor antagonist that is available on the market as a racemic mixture. In the present study, glucuronidation of propranolol and its equipotent phase I metabolite 4-hydroxypropranolol by all 19 members of the human UGT1 and UGT2 families was monitored. UGT1A7, UGT1A9, UGT1A10 and UGT2A1 were found to glucuronidate propranolol, with UGT1A7, UGT1A9 and UGT2A1 mainly acting on (S)-propranolol, while UGT1A10 displays the opposite stereoselectivity. UGT1A7, UGT1A9 and UGT2A1 were also found to glucuronidate 4-hydroxypropranolol. In contrast to propranolol, 4-hydroxypropranolol was found to be glucuronidated by UGT1A8 but not by UGT1A10. Additional biotransformations with 4-methoxypropanolol demonstrated different regioselectivities of these UGTs with respect to the aliphatic and aromatic hydroxy groups of the substrate. Modeling and molecular docking studies were performed to explain the stereoselective glucuronidation of the substrates under study.


Asunto(s)
Glucuronosiltransferasa , Microsomas Hepáticos , Propranolol , Glucurónidos/metabolismo , Glucuronosiltransferasa/metabolismo , Humanos , Microsomas Hepáticos/metabolismo , Simulación del Acoplamiento Molecular , Propranolol/análogos & derivados , Propranolol/farmacología , UDP Glucuronosiltransferasa 1A9
12.
Molecules ; 27(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35164182

RESUMEN

Accumulated preclinical and clinical data show that peripheral restricted opioids provide pain relief with reduced side effects. The peripherally acting opioid analgesic HS-731 is a potent dual µ-/δ-opioid receptor (MOR/DOR) full agonist, and a weak, partial agonist at the κ-opioid receptor (KOR). However, its binding mode at the opioid receptors remains elusive. Here, we present a comprehensive in silico evaluation of HS-731 binding at all opioid receptors. We provide insights into dynamic interaction patterns explaining the different binding and activity of HS-731 on the opioid receptors. For this purpose, we conducted docking, performed molecular dynamics (MD) simulations and generated dynamic pharmacophores (dynophores). Our results highlight two residues important for HS-731 recognition at the classical opioid receptors (MOR, DOR and KOR), particular the conserved residue 5.39 (K) and the non-conserved residue 6.58 (MOR: K, DOR: W and KOR: E). Furthermore, we assume a salt bridge between the transmembrane helices (TM) 5 and 6 via K2275.39 and E2976.58 to be responsible for the partial agonism of HS-731 at the KOR. Additionally, we experimentally demonstrated the absence of affinity of HS-731 to the nociceptin/orphanin FQ peptide (NOP) receptor. We consider the morphinan phenol Y1303.33 responsible for this affinity lack. Y1303.33 points deep into the NOP receptor binding pocket preventing HS-731 binding to the orthosteric binding pocket. These findings provide significant structural insights into HS-731 interaction pattern with the opioid receptors that are important for understanding the pharmacology of this peripheral opioid analgesic.


Asunto(s)
Analgésicos Opioides/farmacología , Compuestos Epoxi/farmacología , Morfinanos/farmacología , Analgésicos Opioides/química , Animales , Células CHO , Cricetulus , Compuestos Epoxi/química , Humanos , Simulación del Acoplamiento Molecular , Morfinanos/química , Receptores Opioides/metabolismo , Receptores Opioides delta/metabolismo , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/metabolismo , Receptor de Nociceptina
13.
Mol Vis ; 27: 601-607, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34880593

RESUMEN

Purpose: Polymorphisms in the gene that codes for the human cytochrome P450 enzyme CYP4V2 are a cause of Bietti crystalline dystrophy (BCD). Therefore, inhibition of CYP4V2 activity may well be a cause of visual disability. However, monitoring the fatty acid hydroxylation reactions catalyzed by this enzyme is tedious and not well suited for inhibitor screening. Methods: We investigated the use of proluciferin compounds as probe substrates for efficient and convenient determination of CYP4V2 activity. Results: Ten proluciferins were tested for conversion by CYP4V2, and eight were found to be substrates of this enzyme. One point inhibitor assays were performed using luciferin 6' 3-furfuryl ether methyl ester (luciferin-3FEME) as the probe substrate and 12 test compounds. As expected, HET0016 had by far the strongest effect, while two other compounds (including osilodrostat) also displayed statistically significant inhibitory potency. The half maximal inhibitory concentration (IC50) for HET0016 was determined to be 179 nM. A recently identified potent inhibitor of human CYP4Z1 was found not to inhibit CYP4V2. To explore the selectivity of this compound between CYP4Z1 and CYP4V2, we developed a homology model of CYP4V2 and conducted docking experiments. Conclusions: We provide the first protocol for a robust and convenient CYP4V2 inhibitor assay that does not depend on fatty acid analysis but can be simply monitored with luminescence. Moreover, we demonstrate additional evidence for the concern that compounds with CYP-inhibitory properties may inhibit CYP4V2 activity and thus, possibly cause visual disability.


Asunto(s)
Distrofias Hereditarias de la Córnea , Familia 4 del Citocromo P450/antagonistas & inhibidores , Enfermedades de la Retina , Familia 4 del Citocromo P450/genética , Humanos , Luciferinas , Mutación
14.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34948269

RESUMEN

In this study, we utilized human DNA topoisomerase IIα as a model target to outline a dynophore-based approach to catalytic inhibitor design. Based on MD simulations of a known catalytic inhibitor and the native ATP ligand analog, AMP-PNP, we derived a joint dynophore model that supplements the static structure-based-pharmacophore information with a dynamic component. Subsequently, derived pharmacophore models were employed in a virtual screening campaign of a library of natural compounds. Experimental evaluation identified flavonoid compounds with promising topoisomerase IIα catalytic inhibition and binding studies confirmed interaction with the ATPase domain. We constructed a binding model through docking and extensively investigated it with molecular dynamics MD simulations, essential dynamics, and MM-GBSA free energy calculations, thus reconnecting the new results to the initial dynophore-based screening model. We not only demonstrate a new design strategy that incorporates a dynamic component of molecular recognition, but also highlight new derivates in the established flavonoid class of topoisomerase II inhibitors.


Asunto(s)
Diseño de Fármacos/métodos , Inhibidores de Topoisomerasa II/farmacología , Antígenos de Neoplasias/metabolismo , Antineoplásicos/farmacología , Sitios de Unión , Dominio Catalítico/fisiología , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Inhibidores de Topoisomerasa II/síntesis química , Inhibidores de Topoisomerasa II/metabolismo
15.
Molecules ; 26(11)2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071603

RESUMEN

Opioids are the most effective analgesics, with most clinically available opioids being agonists to the µ-opioid receptor (MOR). The MOR is also responsible for their unwanted effects, including reward and opioid misuse leading to the current public health crisis. The imperative need for safer, non-addictive pain therapies drives the search for novel leads and new treatment strategies. In this study, the recently discovered MOR/nociceptin (NOP) receptor peptide hybrid KGNOP1 (H-Dmt-D-Arg-Aba-ß-Ala-Arg-Tyr-Tyr-Arg-Ile-Lys-NH2) was evaluated following subcutaneous administration in mouse models of acute (formalin test) and chronic inflammatory pain (Complete Freund's adjuvant-induced paw hyperalgesia), liabilities of spontaneous locomotion, conditioned place preference, and the withdrawal syndrome. KGNOP1 demonstrated dose-dependent antinociceptive effects in the formalin test, and efficacy in attenuating thermal hyperalgesia with prolonged duration of action. Antinociceptive effects of KGNOP1 were reversed by naltrexone and SB-612111, indicating the involvement of both MOR and NOP receptor agonism. In comparison with morphine, KGNOP1 was more potent and effective in mouse models of inflammatory pain. Unlike morphine, KGNOP1 displayed reduced detrimental liabilities, as no locomotor impairment nor rewarding and withdrawal effects were observed. Docking of KGNOP1 to the MOR and NOP receptors and subsequent 3D interaction pattern analyses provided valuable insights into its binding mode. The mixed MOR/NOP receptor peptide KGNOP1 holds promise in the effort to develop new analgesics for the treatment of various pain states with fewer MOR-mediated side effects, particularly abuse and dependence liabilities.


Asunto(s)
Oligopéptidos/genética , Péptidos Opioides/química , Receptores Opioides mu/metabolismo , Dolor Agudo/tratamiento farmacológico , Analgésicos , Animales , Conducta Animal , Células CHO , Cricetinae , Cricetulus , Cicloheptanos/farmacología , Humanos , Hiperalgesia/tratamiento farmacológico , Técnicas In Vitro , Inflamación/tratamiento farmacológico , Masculino , Ratones , Modelos Moleculares , Simulación del Acoplamiento Molecular , Morfina/química , Morfina/farmacología , Movimiento/efectos de los fármacos , Naloxona/farmacología , Naltrexona/farmacología , Manejo del Dolor , Piperidinas/farmacología , Nociceptina
16.
Molecules ; 26(2)2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-33435264

RESUMEN

Diabetes mellitus (DM) is a complex disease which currently affects more than 460 million people and is one of the leading cause of death worldwide. Its development implies numerous metabolic dysfunctions and the onset of hyperglycaemia-induced chronic complications. Multiple ligands can be rationally designed for the treatment of multifactorial diseases, such as DM, with the precise aim of simultaneously controlling multiple pathogenic mechanisms related to the disease and providing a more effective and safer therapeutic treatment compared to combinations of selective drugs. Starting from our previous findings that highlighted the possibility to target both aldose reductase (AR) and protein tyrosine phosphatase 1B (PTP1B), two enzymes strictly implicated in the development of DM and its complications, we synthesised 3-(5-arylidene-4-oxothiazolidin-3-yl)propanoic acids and analogous 2-butenoic acid derivatives, with the aim of balancing the effectiveness of dual AR/PTP1B inhibitors which we had identified as designed multiple ligands (DMLs). Out of the tested compounds, 4f exhibited well-balanced AR/PTP1B inhibitory effects at low micromolar concentrations, along with interesting insulin-sensitizing activity in murine C2C12 cell cultures. The SARs here highlighted along with their rationalization by in silico docking experiments into both target enzymes provide further insights into this class of inhibitors for their development as potential DML antidiabetic candidates.


Asunto(s)
Aldehído Reductasa/antagonistas & inhibidores , Diabetes Mellitus/tratamiento farmacológico , Inhibidores Enzimáticos , Hipoglucemiantes , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Aldehído Reductasa/metabolismo , Animales , Diabetes Mellitus/enzimología , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Células Hep G2 , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Ligandos , Ratones , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Relación Estructura-Actividad
17.
Angew Chem Int Ed Engl ; 60(24): 13294-13301, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33749121

RESUMEN

The generation of bioactive molecules from inactive precursors is a crucial step in the chemical evolution of life, however, mechanistic insights into this aspect of abiogenesis are scarce. Here, we investigate the protein-catalyzed formation of antivirals by the 3C-protease of enterovirus D68. The enzyme induces aldol condensations yielding inhibitors with antiviral activity in cells. Kinetic and thermodynamic analyses reveal that the bioactivity emerges from a dynamic reaction system including inhibitor formation, alkylation of the protein target by the inhibitors, and competitive addition of non-protein nucleophiles to the inhibitors. The most active antivirals are slowly reversible inhibitors with elongated target residence times. The study reveals first examples for the chemical evolution of bio-actives through protein-catalyzed, non-enzymatic C-C couplings. The discovered mechanism works under physiological conditions and might constitute a native process of drug development.


Asunto(s)
Proteasas Virales 3C/antagonistas & inhibidores , Antivirales/química , Enterovirus Humano D/enzimología , Evolución Química , Proteasas Virales 3C/metabolismo , Antivirales/metabolismo , Antivirales/farmacología , Biocatálisis , Carbono/química , Enterovirus Humano D/efectos de los fármacos , Humanos , Cinética , Termodinámica
18.
Ann Neurol ; 85(5): 771-776, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30843274

RESUMEN

Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is the most common autoimmune encephalitis related to autoantibody-mediated synaptic dysfunction. Cerebrospinal fluid-derived human monoclonal NR1 autoantibodies showed low numbers of somatic hypermutations or were unmutated. These unexpected germline-configured antibodies showed weaker binding to the NMDAR than matured antibodies from the same patient. In primary hippocampal neurons, germline NR1 autoantibodies strongly and specifically reduced total and synaptic NMDAR currents in a dose- and time-dependent manner. The findings suggest that functional NMDAR antibodies are part of the human naïve B cell repertoire. Given their effects on synaptic function, they might contribute to a broad spectrum of neuropsychiatric symptoms. Ann Neurol 2019;85:771-776.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato/sangre , Autoanticuerpos/sangre , Receptores de N-Metil-D-Aspartato/sangre , Animales , Encefalitis Antirreceptor N-Metil-D-Aspartato/patología , Células HEK293 , Hipocampo/química , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Ratones , Neuronas/química , Neuronas/metabolismo , Unión Proteica/fisiología , Estructura Secundaria de Proteína , Receptores de N-Metil-D-Aspartato/química
19.
Bioorg Chem ; 99: 103828, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32315896

RESUMEN

Cancer constitutes a group of diseases linked to abnormal cell growth that can potentially spread to other parts of the body and is one of the most common causes of death. The molecular motors - DNA topoisomerases - that enable topological changes of the DNA molecule are one of the most established targets of cancer therapies. Due to known limitations of established topo II poisons such as cardiotoxicity, induction of secondary malignancies and recognized cancer cell resistance, an emerging group of catalytic topo II inhibitors attempts to circumvent these challenges. Currently, this approach comprises several subgroups of mechanistically diverse inhibitors, one of which are compounds that act by binding to their ATPase domain. In this study we have designed, synthesized and characterized a new series of 3,5-substituted 1,2,4-oxadiazoles that act as catalytic inhibitors of human topo IIα. The introduction of the substituted rigid substitutions on the oxadiazole backbone was intended to enhance the interactions with the ATP binding site. In the inhibition assays selected compounds revealed a new class of catalytic inhibitors targeting this molecular motor and showed binding to the isolated topo IIα ATPase domain. The predicted inhibitor binding geometries were evaluated in molecular dynamics simulations and subsequently dynophore models were derived, which provided a deeper insight into molecular recognition with its macromolecular target. Selected compounds also displayed in vitro cytotoxicity on the investigated MCF-7 cancer cell line and did not induce double-strand breaks (DSB), thus displaying a mechanism of action diverse from the topo II poisons also on the cellular level. The substituted oxadiazoles thus comprise a chemical class of interesting compounds that are synthetically fully amenable for further optimization to anticancer drugs.


Asunto(s)
Antineoplásicos/farmacología , ADN-Topoisomerasas de Tipo II/metabolismo , Diseño de Fármacos , Oxadiazoles/farmacología , Inhibidores de Topoisomerasa II/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Biocatálisis , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Células MCF-7 , Modelos Moleculares , Estructura Molecular , Oxadiazoles/síntesis química , Oxadiazoles/química , Relación Estructura-Actividad , Inhibidores de Topoisomerasa II/síntesis química , Inhibidores de Topoisomerasa II/química
20.
Int J Mol Sci ; 21(24)2020 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-33419260

RESUMEN

G protein-coupled receptors are linked to various intracellular transducers, each pathway associated with different physiological effects. Biased ligands, capable of activating one pathway over another, are gaining attention for their therapeutic potential, as they could selectively activate beneficial pathways whilst avoiding those responsible for adverse effects. We performed molecular dynamics simulations with known ß-arrestin-biased ligands like lysergic acid diethylamide and ergotamine in complex with the 5-HT2B receptor and discovered that the extent of ligand bias is directly connected with the degree of closure of the extracellular loop region. Given a loose allosteric coupling of extracellular and intracellular receptor regions, we delineate a concept for biased signaling at serotonin receptors, by which conformational interference with binding pocket closure restricts the signaling repertoire of the receptor. Molecular docking studies of biased ligands gathered from the BiasDB demonstrate that larger ligands only show plausible docking poses in the ergotamine-bound structure, highlighting the conformational constraints associated with bias. This emphasizes the importance of selecting the appropriate receptor conformation on which to base virtual screening workflows in structure-based drug design of biased ligands. As this mechanism of ligand bias has also been observed for muscarinic receptors, our studies provide a general mechanism of signaling bias transferable between aminergic receptors.


Asunto(s)
Ergotamina/química , Dietilamida del Ácido Lisérgico/química , Conformación Proteica , Receptor de Serotonina 5-HT2B/química , Sitios de Unión/genética , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Receptor de Serotonina 5-HT2B/genética , Receptor de Serotonina 5-HT2B/ultraestructura , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/ultraestructura , Serotonina/química , Transducción de Señal/genética , beta-Arrestinas/química , beta-Arrestinas/genética , beta-Arrestinas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA