Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 119(12): 3447-3461, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36120842

RESUMEN

Polymerized human hemoglobin (PolyhHb) is being studied as a possible red blood cell (RBC) substitute for use in scenarios where blood is not available. While the oxygen (O2 ) carrying capacity of PolyhHb makes it appealing as an O2 therapeutic, the commercial PolyhHb PolyHeme® (Northfield Laboratories Inc.) was never approved for clinical use due to the presence of large quantities of low molecular weight (LMW) polymeric hemoglobin (Hb) species (<500 kDa), which have been shown to elicit vasoconstriction, systemic hypertension, and oxidative tissue injury in vivo. Previous bench-top scale studies in our lab demonstrated the ability to synthesize and purify PolyhHb using a two-stage tangential flow filtration purification process to remove almost all undesirable Hb species (>0.2 µm and <500 kDa) in the material, to create a product that should be safer for transfusion. Therefore, to enable future large animal studies and eventual human clinical trials, PolyhHb synthesis and purification processes need to be scaled up to the pilot scale. Hence in this study, we describe the pilot scale synthesis and purification of PolyhHb. Characterization of pilot scale PolyhHb showed that PolyhHb could be successfully produced to yield biophysical properties conducive for its use as an RBC substitute. Size exclusion high performance liquid chromatography showed that pilot scale PolyhHb yielded a high molecular weight Hb polymer containing a small percentage of LMW Hb species (<500 kDa). Additionally, the auto-oxidation rate of pilot scale PolyhHb was even lower than that of previous generations of PolyhHb. Taken together, these results demonstrate that PolyhHb has the ability to be seamlessly manufactured at the pilot scale to enable future large animal studies and clinical trials.


Asunto(s)
Sustitutos Sanguíneos , Hemoglobinas , Animales , Humanos , Sustitutos Sanguíneos/síntesis química , Hemoglobinas/síntesis química , Peso Molecular
2.
Biomed Pharmacother ; 176: 116789, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38815289

RESUMEN

The widespread adoption of high-calorie, high-fat, high-sucrose diets (HFHSD) has become a global health concern, particularly due to their association with cardiovascular diseases and metabolic disorders. These comorbidities increase susceptibility to severe outcomes from viral infections and trauma, with trauma-related incidents significantly contributing to global mortality rates. This context underscores the critical need for a reliable blood supply. Recent research has focused on high molecular weight (MW) polymerized human hemoglobin (PolyhHb) as a promising alternative to red blood cells (RBCs), showing encouraging outcomes in previous studies. Given the overlap of metabolic disorders and trauma-related health issues, it is crucial to assess the potential toxicity of PolyhHb transfusions, particularly in models that represent these vulnerable populations. This study evaluated the effects of PolyhHb exchange transfusion in guinea pigs that had developed metabolic disorders due to a 12-week HFHSD regimen. The guinea pigs, underwent a 20 % blood volume exchange transfusion with either PolyhHb or the lower molecular weight polymerized bovine hemoglobin, Oxyglobin. Results revealed that both PolyhHb and Oxyglobin transfusions led to liver damage, with a more pronounced effect observed in HFHSD-fed animals. Additionally, markers of cardiac dysfunction indicated signs of cardiac injury in both the HFHSD and normal diet groups following the Oxyglobin transfusion. This study highlights how pre-existing metabolic disorders can exacerbate the potential side effects of hemoglobin-based oxygen carriers (HBOCs). Importantly, the newer generation of high MW PolyhHb showed lower cardiac toxicity compared to the earlier generation low MW PolyhHb, known as Oxyglobin, even in models with pre-existing endothelial and metabolic challenges.


Asunto(s)
Enfermedades Cardiovasculares , Hemoglobinas , Enfermedades Metabólicas , Peso Molecular , Animales , Hemoglobinas/metabolismo , Hemoglobinas/farmacología , Cobayas , Masculino , Modelos Animales de Enfermedad , Dieta Alta en Grasa/efectos adversos , Humanos , Sustitutos Sanguíneos/farmacología
3.
Transl Res ; 260: 83-92, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37268039

RESUMEN

The present study aimed to compare the ability of tense (T) and relaxed (R) quaternary state polymerized human hemoglobin (PolyhHb) to restore hemodynamics after severe trauma in a rat model, and to assess their relative toxicity in a guinea pigs (GPs). To assess the efficacy of these PolyhHbs in restoring hemodynamics, Wistar rats were subjected to traumatic brain injury (TBI) followed by hemorrhagic shock (HS). Animals were separated into 3 groups based on the resuscitation solution: Whole blood, T-state or R-state PolyhHb, and followed for 2 hours after resuscitation. For toxicity evaluation, GPs were subjected to HS and the hypovolemic state was maintained for 50 minutes. Then, the GPs were divided randomly into 2 groups, and reperfused with T- or R-state PolyhHb. Rats resuscitated with blood and T-state PolyhHb had a higher recovery of MAP at 30 min after resuscitation when compared to R-state PolyhHb, demonstrating the greater ability of T-state PolyhHb to restore hemodynamics compared to R-state PolyhHb. Resuscitation with R-state PolyhHb in GPs increased markers of liver damage and inflammation, kidney injury and systemic inflammation compared to the T-state PolyhHb group. Finally, increased levels of cardiac damage markers, such as troponin were observed, indicating greater cardiac injury in GPs resuscitated with R-state PolyhHb. Therefore, our results showed that T-state PolyhHb exhibited superior efficacy in a model of TBI followed by HS in rats, and presented reduced vital organ toxicity in GPs, when compared to R-state PolyhHb.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Choque Hemorrágico , Animales , Cobayas , Humanos , Ratas , Modelos Animales de Enfermedad , Hemoglobinas , Oxígeno , Ratas Wistar
4.
Biotechnol Prog ; 38(1): e3219, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34626100

RESUMEN

Polymerized hemoglobin (Hb)-based oxygen carriers (HBOCs) are a scalable and cost-effective red blood cell (RBC) substitute. However, previous generations of commercial polymerized HBOCs elicited oxidative tissue injury in vivo due to the presence of low molecular weight polymeric Hb species (<500 kDa) and cell-free Hb (64 kDa). Polymerized human Hb (PolyhHb) locked in the tense quaternary state (T-state) exhibits great promise to meet clinical needs where past polymerized HBOCs failed. This work shows that separation of T-state PolyhHb via a two-stage tangential flow filtration (TFF) purification train such that the Hb polymers are bracketed between 500 kDa and 0.2 µm creates a uniform polymer size and largely eliminates the Hb species which elicit deleterious side effects in vivo. Biophysical characterization of these materials demonstrates their potential effectiveness as an RBC substitute and verifies the low percentage of low molecular weight Hb polymers and cell-free Hb. Size exclusion chromatography confirms that T-state PolyhHb can be consistently produced in a size range between 500 kDa and 0.2 µm. Furthermore, the average molecular weight of all PolyhHb species produced is one or two orders of magnitude larger than that of the commercial polymerized HBOCs Hemolink and Oxyglobin, respectively. Haptoglobin binding kinetics confirms that two-stage TFF processing of PolyhHb reliably removes cell-free Hb and low molecular weight polymeric Hb species. T-state PolyhHbs demonstrate lower auto-oxidation rates compared to unmodified Hb and prior generations of commercial polymerized HBOCs. These results demonstrate T-state PolyhHb's feasibility as a next-generation polymerized HBOC for potential use in transfusion medicine.


Asunto(s)
Sustitutos Sanguíneos , Hemoglobinas , Hemoglobinas/química , Humanos , Oxígeno/metabolismo , Polimerizacion , Polímeros/química
5.
Sci Rep ; 12(1): 20480, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443351

RESUMEN

For the past thirty years, hemoglobin-based oxygen carriers (HBOCs) have been under development as a red blood cell substitute. Side-effects such as vasoconstriction, oxidative injury, and cardiac toxicity have prevented clinical approval of HBOCs. Recently, high molecular weight (MW) polymerized human hemoglobin (PolyhHb) has shown positive results in rats. Studies have demonstrated that high MW PolyhHb increased O2 delivery, with minimal effects on blood pressure, without vasoconstriction, and devoid of toxicity. In this study, we used guinea pigs to evaluate the efficacy and safety of high MW PolyhHb, since like humans guinea pigs cannot produce endogenous ascorbic acid, which limits the capacity of both species to deal with oxidative stress. Hence, this study evaluated the efficacy and safety of resuscitation from severe hemorrhagic shock with high MW PolyhHb, fresh blood, and blood stored for 2 weeks. Animals were randomly assigned to each experimental group, and hemorrhage was induced by the withdrawal of 40% of the blood volume (BV, estimated as 7.5% of body weight) from the carotid artery catheter. Hypovolemic shock was maintained for 50 min. Resuscitation was implemented by infusing 25% of the animal's BV with the different treatments. Hemodynamics, blood gases, total hemoglobin, and lactate were not different before hemorrhage and during shock between groups. The hematocrit was lower for the PolyhHb group compared to the fresh and stored blood groups after resuscitation. Resuscitation with stored blood had lower blood pressure compared to fresh blood at 2 h. There was no difference in mean arterial pressure between groups at 24 h. Resuscitation with PolyhHb was not different from fresh blood for most parameters. Resuscitation with PolyhHb did not show any remarkable change in liver injury, inflammation, or cardiac damage. Resuscitation with stored blood showed changes in liver function and inflammation, but no kidney injury or systemic inflammation. Resuscitation with stored blood after 24 h displayed sympathetic hyper-activation and signs of cardiac injury. These results suggest that PolyhHb is an effective resuscitation alternative to blood. The decreased toxicities in terms of cardiac injury markers, vital organ function, and inflammation following PolyhHb resuscitation in guinea pigs indicate a favorable safety profile. These results are promising and support future studies with this new generation of PolyhHb as alternative to blood when blood is unavailable.


Asunto(s)
Sustitutos Sanguíneos , Choque Hemorrágico , Humanos , Cobayas , Animales , Ratas , Choque Hemorrágico/terapia , Resucitación/efectos adversos , Sustitutos Sanguíneos/efectos adversos , Polimerizacion , Inflamación , Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA