Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34290142

RESUMEN

Many bacteria harbor RNA-dependent nucleoside-triphosphatases of the DEAH/RHA family, whose molecular mechanisms and cellular functions are poorly understood. Here, we show that the Escherichia coli DEAH/RHA protein, HrpA, is an ATP-dependent 3 to 5' RNA helicase and that the RNA helicase activity of HrpA influences bacterial survival under antibiotics treatment. Limited proteolysis, crystal structure analysis, and functional assays showed that HrpA contains an N-terminal DEAH/RHA helicase cassette preceded by a unique N-terminal domain and followed by a large C-terminal region that modulates the helicase activity. Structures of an expanded HrpA helicase cassette in the apo and RNA-bound states in combination with cross-linking/mass spectrometry revealed ratchet-like domain movements upon RNA engagement, much more pronounced than hitherto observed in related eukaryotic DEAH/RHA enzymes. Structure-based functional analyses delineated transient interdomain contact sites that support substrate loading and unwinding, suggesting that similar conformational changes support RNA translocation. Consistently, modeling studies showed that analogous dynamic intramolecular contacts are not possible in the related but helicase-inactive RNA-dependent nucleoside-triphosphatase, HrpB. Our results indicate that HrpA may be an interesting target to interfere with bacterial tolerance toward certain antibiotics and suggest possible interfering strategies.


Asunto(s)
Adenosina Difosfato/metabolismo , Antibacterianos/farmacología , ARN Helicasas DEAD-box/metabolismo , Farmacorresistencia Bacteriana , Proteínas de Escherichia coli/metabolismo , Escherichia coli/crecimiento & desarrollo , Sitios de Unión , Cristalografía por Rayos X , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Conformación Proteica
2.
Chemistry ; 29(23): e202203967, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36799129

RESUMEN

The ephrin type-A receptor 2 (EPHA2) kinase belongs to the largest family of receptor tyrosine kinases. There are several indications of an involvement of EPHA2 in the development of infectious diseases and cancer. Despite pharmacological potential, EPHA2 is an under-examined target protein. In this study, we synthesized a series of derivatives of the inhibitor NVP-BHG712 and triazine-based compounds. These compounds were evaluated to determine their potential as kinase inhibitors of EPHA2, including elucidation of their binding mode (X-ray crystallography), affinity (microscale thermophoresis), and selectivity (Kinobeads assay). Eight inhibitors showed affinities in the low-nanomolar regime (KD <10 nM). Testing in up to seven colon cancer cell lines that express EPHA2 reveals that several derivatives feature promising effects for the control of human colon carcinoma. Thus, we have developed a set of powerful tool compounds for fundamental new research on the interplay of EPH receptors in a cellular context.


Asunto(s)
Neoplasias Colorrectales , Pirazoles , Humanos , Pirazoles/química , Pirimidinas/farmacología , Pirimidinas/química , Línea Celular , Neoplasias Colorrectales/tratamiento farmacológico , Línea Celular Tumoral
3.
Genes Dev ; 29(24): 2576-87, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26637280

RESUMEN

The Brr2 helicase provides the key remodeling activity for spliceosome catalytic activation, during which it disrupts the U4/U6 di-snRNP (small nuclear RNA protein), and its activity has to be tightly regulated. Brr2 exhibits an unusual architecture, including an ∼ 500-residue N-terminal region, whose functions and molecular mechanisms are presently unknown, followed by a tandem array of structurally similar helicase units (cassettes), only the first of which is catalytically active. Here, we show by crystal structure analysis of full-length Brr2 in complex with a regulatory Jab1/MPN domain of the Prp8 protein and by cross-linking/mass spectrometry of isolated Brr2 that the Brr2 N-terminal region encompasses two folded domains and adjacent linear elements that clamp and interconnect the helicase cassettes. Stepwise N-terminal truncations led to yeast growth and splicing defects, reduced Brr2 association with U4/U6•U5 tri-snRNPs, and increased ATP-dependent disruption of the tri-snRNP, yielding U4/U6 di-snRNP and U5 snRNP. Trends in the RNA-binding, ATPase, and helicase activities of the Brr2 truncation variants are fully rationalized by the crystal structure, demonstrating that the N-terminal region autoinhibits Brr2 via substrate competition and conformational clamping. Our results reveal molecular mechanisms that prevent premature and unproductive tri-snRNP disruption and suggest novel principles of Brr2-dependent splicing regulation.


Asunto(s)
Modelos Moleculares , ARN Helicasas/química , ARN Helicasas/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Empalmosomas/enzimología , Adenosina Trifosfatasas/metabolismo , Chaetomium/enzimología , Chaetomium/genética , Cristalización , Humanos , Unión Proteica , Pliegue de Proteína , Empalme de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , ARN Helicasas/genética , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/química , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/química , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Empalmosomas/genética
4.
Biophys J ; 114(4): 788-799, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29490241

RESUMEN

Precursor messenger RNA splicing is mediated by the spliceosome, a large and dynamic molecular machine composed of five small nuclear RNAs and numerous proteins. Many spliceosomal proteins are predicted to be intrinsically disordered or contain large disordered regions, but experimental validation of these predictions is scarce, and the precise functions of these proteins are often unclear. Here, we show via circular dichroism spectroscopy, dynamic light scattering, and NMR spectroscopy that the yeast spliceosomal disassembly factor Ntr2 is largely intrinsically disordered. Peptide SPOT analyses, analytical size-exclusion chromatography, and surface plasmon resonance measurements revealed that Ntr2 uses an N-terminal region to bind the C-terminal helicase unit of the Brr2 RNA helicase, an enzyme involved in spliceosome activation and implicated in splicing catalysis and spliceosome disassembly. NMR analyses suggested that Ntr2 does not adopt a tertiary structure and likely remains disordered upon complex formation. RNA binding and unwinding studies showed that Ntr2 downregulates Brr2 helicase activity in vitro by modulating the fraction of helicase molecules productively bound to the RNA substrate. Our data clarify the nature of a physical link between Brr2 and Ntr2, and point to the possibility of a functional Ntr2-Brr2 interplay during splicing.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/metabolismo , ARN Helicasas/metabolismo , ARN de Hongos/metabolismo , ARN Nuclear Pequeño/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Empalmosomas/metabolismo , Catálisis , Proteínas Intrínsecamente Desordenadas/química , ARN Helicasas/química , Proteínas de Saccharomyces cerevisiae/química
5.
Nucleic Acids Res ; 43(14): e94, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-25897116

RESUMEN

The substitution of 2'-fluoro for 2'-hydroxyl moieties in RNA substantially improves the stability of RNA. RNA stability is a major issue in RNA research and applications involving RNA. We report that the RNA polymerase from the marine cyanophage Syn5 has an intrinsic low discrimination against the incorporation of 2'-fluoro dNMPs during transcription elongation. The presence of both magnesium and manganese ions at high concentrations further reduce this discrimination without decreasing the efficiency of incorporation. We have constructed a Syn5 RNA polymerase in which tyrosine 564 is replaced with phenylalanine (Y564F) that further decreases the discrimination against 2'-fluoro-dNTPs during RNA synthesis. Sequence elements in DNA templates that affect the yield of RNA and incorporation of 2'-fluoro-dNMPs by Syn5 RNA polymerase have been identified.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , ARN/biosíntesis , ARN Polimerasas Dirigidas por ADN/genética , Desoxirribonucleótidos/metabolismo , Flúor/química , Manganeso , Mutación , Podoviridae/enzimología , ARN/química , Estabilidad del ARN , Sitio de Iniciación de la Transcripción , Transcripción Genética
6.
Acta Crystallogr D Struct Biol ; 80(Pt 5): 350-361, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38682668

RESUMEN

CdaA is the most widespread diadenylate cyclase in many bacterial species, including several multidrug-resistant human pathogens. The enzymatic product of CdaA, cyclic di-AMP, is a secondary messenger that is essential for the viability of many bacteria. Its absence in humans makes CdaA a very promising and attractive target for the development of new antibiotics. Here, the structural results are presented of a crystallographic fragment screen against CdaA from Listeria monocytogenes, a saprophytic Gram-positive bacterium and an opportunistic food-borne pathogen that can cause listeriosis in humans and animals. Two of the eight fragment molecules reported here were localized in the highly conserved ATP-binding site. These fragments could serve as potential starting points for the development of antibiotics against several CdaA-dependent bacterial species.


Asunto(s)
Listeria monocytogenes , Listeria monocytogenes/enzimología , Cristalografía por Rayos X/métodos , Sitios de Unión , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Modelos Moleculares , Fosfatos de Dinucleósidos/metabolismo , Fosfatos de Dinucleósidos/química , Antibacterianos/farmacología , Humanos , Liasas de Fósforo-Oxígeno/química , Liasas de Fósforo-Oxígeno/metabolismo , Conformación Proteica
7.
ChemMedChem ; 19(9): e202400057, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38385828

RESUMEN

A 1H-isoindol-3-amine was identified as suitable P1 group for the proprotein convertase furin using a crystallographic screening with a set of 20 fragments known to occupy the S1 pocket of trypsin-like serine proteases. Its binding mode is very similar to that observed for the P1 group of benzamidine-derived peptidic furin inhibitors suggesting an aminomethyl substitution of this fragment to obtain a couplable P1 residue for the synthesis of substrate-analogue furin inhibitors. The obtained inhibitors possess a slightly improved picomolar inhibitory potency compared to their benzamidine-derived analogues. The crystal structures of two inhibitors in complex with furin revealed that the new P1 group is perfectly suited for incorporation in peptidic furin inhibitors. Selected inhibitors were tested for antiviral activity against respiratory syncytial virus (RSV) and a furin-dependent influenza A virus (SC35M/H7N7) in A549 human lung cells and demonstrated an efficient inhibition of virus activation and replication at low micromolar or even submicromolar concentrations. First results suggest that the Mas-related G-protein coupled receptor GPCR-X2 could be a potential off-target for certain benzamidine-derived furin inhibitors.


Asunto(s)
Antivirales , Diseño de Fármacos , Furina , Furina/antagonistas & inhibidores , Furina/metabolismo , Humanos , Antivirales/farmacología , Antivirales/síntesis química , Antivirales/química , Relación Estructura-Actividad , Células A549 , Virus de la Influenza A/efectos de los fármacos , Cristalografía por Rayos X , Indoles/farmacología , Indoles/química , Indoles/síntesis química , Estructura Molecular , Modelos Moleculares , Virus Sincitiales Respiratorios/efectos de los fármacos , Relación Dosis-Respuesta a Droga
8.
ACS Chem Biol ; 19(2): 563-574, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38232960

RESUMEN

The main protease Mpro, nsp5, of SARS-CoV-2 (SCoV2) is one of its most attractive drug targets. Here, we report primary screening data using nuclear magnetic resonance spectroscopy (NMR) of four different libraries and detailed follow-up synthesis on the promising uracil-containing fragment Z604 derived from these libraries. Z604 shows time-dependent binding. Its inhibitory effect is sensitive to reducing conditions. Starting with Z604, we synthesized and characterized 13 compounds designed by fragment growth strategies. Each compound was characterized by NMR and/or activity assays to investigate their interaction with Mpro. These investigations resulted in the four-armed compound 35b that binds directly to Mpro. 35b could be cocrystallized with Mpro revealing its noncovalent binding mode, which fills all four active site subpockets. Herein, we describe the NMR-derived fragment-to-hit pipeline and its application for the development of promising starting points for inhibitors of the main protease of SCoV2.


Asunto(s)
Descubrimiento de Drogas , SARS-CoV-2 , Descubrimiento de Drogas/métodos , SARS-CoV-2/metabolismo , Dominio Catalítico , Espectroscopía de Resonancia Magnética , Péptido Hidrolasas/metabolismo , Inhibidores de Proteasas/metabolismo , Antivirales/farmacología , Simulación del Acoplamiento Molecular
9.
Acta Crystallogr D Struct Biol ; 79(Pt 9): 857-865, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37574972

RESUMEN

The increasing number of people dying from tuberculosis and the existence of extensively drug-resistant strains has led to an urgent need for new antituberculotic drugs with alternative modes of action. As part of the thioredoxin system, thioredoxin reductase (TrxR) is essential for the survival of Mycobacterium tuberculosis (Mtb) and shows substantial differences from human TrxR, making it a promising and most likely selective target. As a model organism for Mtb, crystals of Mycobacterium smegmatis TrxR that diffracted to high resolution were used in crystallographic fragment screening to discover binding fragments and new binding sites. The application of the 96 structurally diverse fragments from the F2X-Entry Screen revealed 56 new starting points for fragment-based drug design of new TrxR inhibitors. Over 200 crystal structures were analyzed using FragMAXapp, which includes processing and refinement by largely automated software pipelines and hit identification via the multi-data-set analysis approach PanDDA. The fragments are bound to 11 binding sites, of which four are positioned at binding pockets or important interaction sites and therefore show high potential for possible inhibition of TrxR.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Reductasa de Tiorredoxina-Disulfuro/química , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Mycobacterium tuberculosis/metabolismo , Sitios de Unión , Diseño de Fármacos
10.
Protein Sci ; 32(1): e4542, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36519786

RESUMEN

The DNMT3A DNA methyltransferase and MECP2 methylation reader are highly expressed in neurons. Both proteins interact via their DNMT3A-ADD and MECP2-TRD domains, and the MECP2 interaction regulates the activity and subnuclear localization of DNMT3A. Here, we mapped the interface of both domains using peptide SPOT array binding, protein pull-down, equilibrium peptide binding assays, and structural analyses. The region D529-D531 on the surface of the ADD domain was identified as interaction point with the TRD domain. This includes important residues of the histone H3 N-terminal tail binding site to the ADD domain, explaining why TRD and H3 binding to the ADD domain is competitive. On the TRD domain, residues 214-228 containing K219 and K223 were found to be essential for the ADD interaction. This part represents a folded patch within the otherwise largely disordered TRD domain. A crystal structure analysis of ADD revealed that the identified H3/TDR lysine binding pocket is occupied by an arginine residue from a crystallographic neighbor in the ADD apoprotein structure. Finally, we show that mutations in the interface of ADD and TRD domains disrupt the cellular interaction of both proteins in NIH3T3 cells. In summary, our data show that the H3 peptide binding cleft of the ADD domain also mediates the interaction with the MECP2-TRD domain suggesting that this binding site may have a broader role also in the interaction of DNMT3A with other proteins leading to complex regulation options by competitive and PTM specific binding.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , ADN Metiltransferasa 3A , Proteína 2 de Unión a Metil-CpG , Sitios de Unión , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Proteína 2 de Unión a Metil-CpG/química , Proteína 2 de Unión a Metil-CpG/metabolismo , Células 3T3 NIH , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Histonas/química , Histonas/metabolismo , Humanos
11.
ACS Omega ; 8(48): 46051-46065, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38075755

RESUMEN

The Shigella pathogenicity factor IpgC belongs to the class II of type III secretion system chaperones, whose members are characterized by a tetratricopeptide repeat (TPR) domain consisting of three and a half TPR motifs. Since IpgC is essential for Shigella virulence, we determined a high-resolution crystal structure of this chaperone to facilitate its use as a target for the structure-based design of anti-shigellosis compounds. The crystal structure revealed two possible homodimer assemblies, which strongly differ from the homodimer architectures so far known for IpgC and orthologues thereof. Through crystallographic fragment screening, we identified 10 small molecules that bind to IpgC and, therefore, are available for expansion to generate larger, more potent binders. A follow-up compound, based on one of our fragment hits, binds to a strictly conserved site, which overlaps with the binding site of the chaperone's substrates, IpaB and IpaC. Therefore, it constitutes a promising starting point for the design of functional IpgC inhibitors.

12.
J Med Chem ; 65(21): 14630-14641, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36260741

RESUMEN

The identification of starting points for compound development is one of the key steps in early-stage drug discovery. Information-rich techniques such as crystallographic fragment screening can potentially increase the efficiency of this step by providing the structural information of the binding mode of the ligands in addition to the mere binding information. Here, we present the crystallographic screening of our 1000-plus-compound F2X-Universal Library against the complex of the yeast spliceosomal Prp8 RNaseH-like domain and the snRNP assembly factor Aar2. The observed 269 hits are distributed over 10 distinct binding sites on the surface of the protein-protein complex. Our work shows that hit clusters from large-scale crystallographic fragment screening campaigns identify known interaction sites with other proteins and suggest putative additional interaction sites. Furthermore, the inherent binding pose validation within the hit clusters may accelerate downstream compound optimization.


Asunto(s)
Descubrimiento de Drogas , Proteínas , Cristalografía por Rayos X , Ligandos , Descubrimiento de Drogas/métodos , Sitios de Unión , Unión Proteica
13.
Protein Sci ; 31(9): e4391, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36040268

RESUMEN

In their recent commentary in Protein Science, Jaskolski et al. analyzed three randomly picked diffraction data sets from fragment-screening group depositions from the PDB and, based on that, they claimed that such data are principally problematic. We demonstrate here that if such data are treated properly, none of the proclaimed criticisms persist.


Asunto(s)
Proteínas , Cristalografía por Rayos X , Ligandos , Proteínas/química
14.
J Mol Biol ; 434(16): 167720, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35839840

RESUMEN

Viral infection in cells triggers a cascade of molecular defense mechanisms to maintain host-cell homoeostasis. One of these mechanisms is ADP-ribosylation, a fundamental post-translational modification (PTM) characterized by the addition of ADP-ribose (ADPr) on substrates. Poly(ADP-ribose) polymerases (PARPs) are implicated in this process and they perform ADP-ribosylation on host and pathogen proteins. Some viral families contain structural motifs that can reverse this PTM. These motifs known as macro domains (MDs) are evolutionarily conserved protein domains found in all kingdoms of life. They are divided in different classes with the viral belonging to Macro-D-type class because of their properties to recognize and revert the ADP-ribosylation. Viral MDs are potential pharmaceutical targets, capable to counteract host immune response. Sequence and structural homology between viral and human MDs are an impediment for the development of new active compounds against their function. Remdesivir, is a drug administrated in viral infections inhibiting viral replication through RNA-dependent RNA polymerase (RdRp). Herein, GS-441524, the active metabolite of the remdesivir, is tested as a hydrolase inhibitor for several viral MDs and for its binding to human homologs found in PARPs. This study presents biochemical and biophysical studies, which indicate that GS-441524 selectively modifies SARS-CoV-2 MD de-MARylation activity, while it does not interact with hPARP14 MD2 and hPARP15 MD2. The structural investigation of MD•GS-441524 complexes, using solution NMR and X-ray crystallography, discloses the impact of certain amino acids in ADPr binding cavity suggesting that F360 and its adjacent residues tune the selective binding of the inhibitor to SARS-CoV-2 MD.


Asunto(s)
ADP-Ribosilación , Adenosina/análogos & derivados , Inhibidores de Proteasa de Coronavirus , Poli(ADP-Ribosa) Polimerasas , SARS-CoV-2 , ADP-Ribosilación/efectos de los fármacos , Adenosina/química , Adenosina/farmacología , Adenosina Difosfato Ribosa/química , Inhibidores de Proteasa de Coronavirus/química , Inhibidores de Proteasa de Coronavirus/farmacología , Humanos , Poli(ADP-Ribosa) Polimerasas/química , Unión Proteica , Dominios Proteicos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología
15.
J Appl Crystallogr ; 54(Pt 1): 376-382, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33833659

RESUMEN

In the past two decades, most of the steps in a macromolecular crystallography experiment have undergone tremendous development with respect to speed, feasibility and increase of throughput. The part of the experimental workflow that is still a bottleneck, despite significant efforts, involves the manipulation and harvesting of the crystals for the diffraction experiment. Here, a novel low-cost device is presented that functions as a cover for 96-well crystallization plates. This device enables access to the individual experiments one at a time by its movable parts, while minimizing evaporation of all other experiments of the plate. In initial tests, drops of many typically used crystallization cocktails could be successfully protected for up to 6 h. Therefore, the manipulation and harvesting of crystals is straightforward for the experimenter, enabling significantly higher throughput. This is useful for many macromolecular crystallography experiments, especially multi-crystal screening campaigns.

16.
Acta Crystallogr D Struct Biol ; 77(Pt 6): 799-808, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34076593

RESUMEN

Crystallographic fragment screening (CFS) has become one of the major techniques for screening compounds in the early stages of drug-discovery projects. Following the advances in automation and throughput at modern macromolecular crystallography beamlines, the bottleneck for CFS has shifted from collecting data to organizing and handling the analysis of such projects. The complexity that emerges from the use of multiple methods for processing and refinement and to search for ligands requires an equally sophisticated solution to summarize the output, allowing researchers to focus on the scientific questions instead of on software technicalities. FragMAXapp is the fragment-screening project-management tool designed to handle CFS projects at MAX IV Laboratory. It benefits from the powerful computing infrastructure of large-scale facilities and, as a web application, it is accessible from everywhere.


Asunto(s)
Descubrimiento de Drogas/métodos , Ligandos , Sustancias Macromoleculares/química , Modelos Moleculares , Proteínas/química , Programas Informáticos , Análisis de Datos
17.
Acta Crystallogr D Struct Biol ; 77(Pt 9): 1168-1182, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34473087

RESUMEN

In recent years, crystallographic fragment screening has matured into an almost routine experiment at several modern synchrotron sites. The hits of the screening experiment, i.e. small molecules or fragments binding to the target protein, are revealed along with their 3D structural information. Therefore, they can serve as useful starting points for further structure-based hit-to-lead development. However, the progression of fragment hits to tool compounds or even leads is often hampered by a lack of chemical feasibility. As an attractive alternative, compound analogs that embed the fragment hit structurally may be obtained from commercial catalogs. Here, a workflow is reported based on filtering and assessing such potential follow-up compounds by template docking. This means that the crystallographic binding pose was integrated into the docking calculations as a central starting parameter. Subsequently, the candidates are scored on their interactions within the binding pocket. In an initial proof-of-concept study using five starting fragments known to bind to the aspartic protease endothiapepsin, 28 follow-up compounds were selected using the designed workflow and their binding was assessed by crystallography. Ten of these compounds bound to the active site and five of them showed significantly increased affinity in isothermal titration calorimetry of up to single-digit micromolar affinity. Taken together, this strategy is capable of efficiently evolving the initial fragment hits without major synthesis efforts and with full control by X-ray crystallography.


Asunto(s)
Ácido Aspártico Endopeptidasas , Cristalografía por Rayos X/métodos , Descubrimiento de Drogas/métodos , Ligandos , Modelos Moleculares , Ácido Aspártico Endopeptidasas/química , Ácido Aspártico Endopeptidasas/metabolismo , Sitios de Unión , Dominio Catalítico , Unión Proteica
18.
J Vis Exp ; (169)2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33749678

RESUMEN

Fragment screening is a technique that helps to identify promising starting points for ligand design. Given that crystals of the target protein are available and display reproducibly high-resolution X-ray diffraction properties, crystallography is among the most preferred methods for fragment screening because of its sensitivity. Additionally, it is the only method providing detailed 3D information of the binding mode of the fragment, which is vital for subsequent rational compound evolution. The routine use of the method depends on the availability of suitable fragment libraries, dedicated means to handle large numbers of samples, state-of-the-art synchrotron beamlines for fast diffraction measurements and largely automated solutions for the analysis of the results. Here, the complete practical workflow and the included tools on how to conduct crystallographic fragment screening (CFS) at the Helmholtz-Zentrum Berlin (HZB) are presented. Preceding this workflow, crystal soaking conditions as well as data collection strategies are optimized for reproducible crystallographic experiments. Then, typically in a one to two-day procedure, a 96-membered CFS-focused library provided as dried ready-to-use plates is employed to soak 192 crystals, which are then flash-cooled individually. The final diffraction experiments can be performed within one day at the robot-mounting supported beamlines BL14.1 and BL14.2 at the BESSY  II electron storage ring operated by the HZB in Berlin-Adlershof (Germany). Processing of the crystallographic data, refinement of the protein structures, and hit identification is fast and largely automated using specialized software pipelines on dedicated servers, requiring little user input. Using the CFS workflow at the HZB enables routine screening experiments. It increases the chances for successful identification of fragment hits as starting points to develop more potent binders, useful for pharmacological or biochemical applications.


Asunto(s)
Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Berlin , Cristalización , Recolección de Datos , Ligandos , Proteínas/química , Programas Informáticos , Sincrotrones , Flujo de Trabajo
19.
Structure ; 28(6): 694-706.e5, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32413289

RESUMEN

Crystallographic fragment screening (CFS) provides excellent starting points for projects concerned with drug discovery or biochemical tool compound development. One of the fundamental prerequisites for effective CFS is the availability of a versatile fragment library. Here, we report on the assembly of the 1,103-compound F2X-Universal Library and its 96-compound sub-selection, the F2X-Entry Screen. Both represent the available fragment chemistry and are highly diverse in terms of their 3D-pharmacophore variations. Validation of the F2X-Entry Screen in CFS campaigns using endothiapepsin and the Aar2/RNaseH complex yielded hit rates of 30% and 21%, respectively, and revealed versatile binding sites. Dry presentation of the libraries allows CFS campaigns to be carried out with or without the co-solvent DMSO present. Most of the hits in our validation campaigns could be reproduced also in the absence of DMSO. Consequently, CFS can be carried out more efficiently and for a wider range of conditions and targets.


Asunto(s)
Ácido Aspártico Endopeptidasas/química , Ácido Aspártico Endopeptidasas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Sitios de Unión , Cristalografía por Rayos X , Bases de Datos de Compuestos Químicos , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Modelos Moleculares , Bibliotecas de Moléculas Pequeñas/química
20.
Acta Crystallogr D Struct Biol ; 76(Pt 11): 1065-1079, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33135678

RESUMEN

This study focuses on the polymorphism of human insulin (HI) upon the binding of the phenolic derivatives p-coumaric acid or trans-resveratrol over a wide pH range. The determination of the structural behaviour of HI via X-ray powder diffraction (XRPD) and single-crystal X-ray diffraction (SCXRD) is reported. Four distinct polymorphs were identified, two of which have not been reported previously. The intermediate phase transitions are discussed. One of the novel monoclinic polymorphs displays the highest molecular packing among insulin polymorphs of the same space group to date; its structure was elucidated by SCXRD. XRPD data collection was performed using a variety of instrumental setups and a systematic comparison of the acquired data is presented. A laboratory diffractometer was used for screening prior to high-resolution XRPD data collection on the ID22 beamline at the European Synchrotron Radiation Facility. Additional measurements for the most representative samples were performed on the X04SA beamline at the Swiss Light Source (SLS) using the MYTHEN II detector, which allowed the detection of minor previously untraceable impurities and dramatically improved the d-spacing resolution even for poorly diffracting samples.


Asunto(s)
Ácidos Cumáricos , Insulina Regular Humana , Modelos Moleculares , Resveratrol , Ácidos Cumáricos/química , Cristalización , Humanos , Insulina Regular Humana/química , Sustancias Macromoleculares , Difracción de Polvo , Unión Proteica , Resveratrol/química , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA