Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Biomacromolecules ; 25(8): 5374-5386, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39014545

RESUMEN

Hydrogels are promising materials for biomedical applications, particularly in drug delivery and tissue engineering. This study highlights thermoresponsive hydrogels, specifically poly(lactic-co-glycolic acid) (PLGA)-poly(ethylene glycol) (PEG)-PLGA triblock copolymers, and introduces a feed rate-controlled polymerization (FRCP) method. By utilizing an organic catalyst and regulating the monomer feed rate, the sequence distribution of PLGA within the triblock copolymer is controlled. Various analyses, including 13C NMR and rheological measurements, were conducted to investigate the impact of sequence distribution. Results show that altering sequence distribution significantly influences the sol-gel transition, hydrophobicity-hydrophilicity balance, and drug release profile. Increased sequence uniformity lowers the glass transition temperature, raises the sol-gel transition temperature due to enhanced hydrophilicity, and promotes a more uniform drug (curcumin) distribution within the PLGA domain, resulting in a slower release rate. This study emphasizes the importance of PLGA sequence distribution in biomedical applications and the potential of FRCP to tailor thermoresponsive hydrogels for biomedical advancements.


Asunto(s)
Hidrogeles , Polietilenglicoles , Hidrogeles/química , Polietilenglicoles/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Polimerizacion , Interacciones Hidrofóbicas e Hidrofílicas , Poliglactina 910/química , Temperatura , Liberación de Fármacos
2.
Langmuir ; 39(38): 13546-13559, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37706471

RESUMEN

Amphiphilic block copolymer micelles can mimic the ability of natural lung surfactant to reduce the air-water interfacial tension close to zero and prevent the Laplace pressure-induced alveolar collapse. In this work, we investigated the air-water interfacial behaviors of polymer micelles derived from eight different poly(ethylene glycol) (PEG)-based block copolymers having different hydrophobic block chemistries to elucidate the effect of the core block chemistry on the surface mechanics of the block copolymer micelles. Aqueous micelles of about 30 nm in hydrodynamic diameter were prepared from the PEG-based block copolymers via equilibration-nanoprecipitation (ENP) and spread on the water surface using water as the spreading medium. Surface pressure-area isotherm and quantitative Brewster angle microscopy (QBAM) measurements were performed to investigate how the micelle/monolayer structures change during lateral compression of the monolayer; widely varying structural behaviors were observed, including the wrinkling/collapse of micelle monolayers and deformation and/or the desorption of individual micelles. By bivariate correlation regression analysis of surface pressure-area isotherm data, it was found that the rigidity and hydrophobicity of the hydrophobic core domain, which are quantified by glass-transition temperature (Tg) and water contact angle (θ) measurements, respectively, are coupled factors that need to be taken into account concurrently in order to control the surface mechanical properties of polymer micelle monolayers; micelles having rigid and strongly hydrophobic cores exhibited high surface pressure and a high compressibility modulus under high compression. High surface pressure and a high compressibility modulus were also found to be correlated with the formation of wrinkles in the micelle monolayer (visualized by Brewster angle microscopy (BAM)). From this study, we conclude that polymer micelles based on hydrophobic block materials having higher Tg and θ are more suitable for surfactant replacement therapy applications that require the therapeutic surfactant to produce a high surface pressure and modulus at the alveolar air-water interface.

3.
Soft Matter ; 19(47): 9269-9281, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38009013

RESUMEN

In the pursuit of the development of a first-in-kind polymer lung surfactant (PLS) therapeutic whose effects are biophysical in nature, a comprehensive understanding of the factors affecting the air-water surface mechanical behavior of water-spread block copolymer micelles is desired. To this end, we explore the effect of temperature on the surface mechanical behavior of two different micelle core chemistries, poly(styrene) (PS) and poly(tert-butyl methacrylate) (PtBMA), each having poly(ethylene glycol) (PEG) as the hydrophilic block. The behavior is characterized using surface pressure-area isotherms and quantitative Brewster angle microscopy. The results indicate that the temperature has a significant effect on the micelle structure at the interface and this effect is related to the core Tg as well as the core interfacial tension properties. When temperature is higher than the core Tg for PS-PEG, the spherical micelle core rearranges to form an oblate-like structure which increases its interfacial area. The structural rearrangement changes the mechanism by which the film produces high surface pressure. For PtBMA-PEG, which has a lower interfacial tension with water and air compared to PS, the core domains spread at the interface when the mobility is sufficiently high such that a PtBMA film is formed under high compression. The implications of these changes on PLS efficacy are discussed highlighting the importance of core Tg characterization for polymer nanoparticle applications.

4.
Mol Pharm ; 19(8): 2776-2794, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35834797

RESUMEN

For many locally advanced tumors, the chemotherapy-radiotherapy (CT-RT) combination ("chemoradiation") is currently the standard of care. Intratumoral (IT) CT-based chemoradiation has the potential to overcome the limitations of conventional systemic CT-RT (side effects). For maximizing the benefits of IT CT-RT, our laboratory has previously developed a radiation-controlled drug release formulation, in which anticancer drug paclitaxel (PTX) and radioluminescent CaWO4 (CWO) nanoparticles (NPs) are co-encapsulated with poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) block copolymers ("PEG-PLA/CWO/PTX NPs"). These PEG-PLA/CWO/PTX NPs enable radiation-controlled release of PTX and are capable of producing sustained therapeutic effects lasting for at least one month following a single IT injection. The present article focuses on discussing our recent finding about the effect of the stereochemical structure of PTX on the efficacy of this PEG-PLA/CWO/PTX NP formulation. Stereochemical differences in two different PTX compounds ("PTX-S" from Samyang Biopharmaceuticals and "PTX-B" from Biotang) were characterized by 2D heteronuclear/homonuclear NMR, Raman spectroscopy, and circular dichroism measurements. The difference in PTX stereochemistry was found to significantly influence their water solubility (WS); PTX-S (WS ≈ 4.69 µg/mL) is about 19 times more water soluble than PTX-B (WS ≈ 0.25 µg/mL). The two PTX compounds showed similar cancer cell-killing performances in vitro when used as free drugs. However, the subtle stereochemical difference significantly influenced their X-ray-triggered release kinetics from the PEG-PLA/CWO/PTX NPs; the more water-soluble PTX-S was released faster than the less water-soluble PTX-B. This difference was manifested in the IT pharmacokinetics and eventually in the survival percentages of test animals (mice) treated with PEG-PLA/CWO/PTX NPs + X-rays in an in vivo human tumor xenograft study; at short times (<1 month), concurrent PEG-PLA/CWO/PTX-S NPs produced a greater tumor-suppression effect, whereas PEG-PLA/CWO/PTX-B NPs had a longer-lasting radio-sensitizing effect. This study demonstrates the importance of the stereochemistry of a drug in a therapy based on a controlled release formulation.


Asunto(s)
Nanopartículas , Neoplasias , Animales , Línea Celular Tumoral , Portadores de Fármacos/química , Humanos , Ratones , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Paclitaxel/química , Polietilenglicoles/química , Agua , Rayos X
5.
Biomacromolecules ; 23(6): 2471-2484, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35580262

RESUMEN

We have recently discovered that pulmonary administration of nanoparticles (micelles) formed by amphiphilic poly(styrene-block-ethylene glycol) (PS-PEG) block copolymers has the potential to treat a lung disorder involving lung surfactant (LS) dysfunction (called acute respiratory distress syndrome (ARDS)), as PS-PEG nanoparticles are capable of reducing the surface tension of alveolar fluid, while they are resistant to deactivation caused by plasma proteins/inflammation products unlike natural LS. Herein, we report studies of the clearance pathways and kinetics of PS-PEG nanoparticles from the lung, which are essential for designing further preclinical IND-enabling studies. Using fluorescently labeled PS-PEG nanoparticles, we found that, following pharyngeal aspiration in mice, the retention of these nanoparticles in the lungs extends over 2 weeks, while their transport into other (secondary) organs is relatively insignificant. An analysis based on a multicompartmental pharmacokinetic model suggests a biphasic mechanism involving a fast mucociliary escalator process through the conducting airways and much slower alveolar clearance processes by the action of macrophages and also via direct translocation into the circulation. An excessive dose of PS-PEG nanoparticles led to prolonged retention in the lungs due to saturation of the alveolar clearance capacity.


Asunto(s)
Polietilenglicoles , Polímeros , Animales , Pulmón , Ratones , Micelas , Polietilenglicoles/farmacocinética , Tensoactivos
7.
Langmuir ; 34(16): 4874-4887, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29602280

RESUMEN

Polymers at fluid interfaces are used for a number of applications that include coatings, electronics, separation, energy, cosmetics, and medicines. Here, we present a study on an amphiphilic block copolymer, poly((d,l-lactic acid- co-glycolic acid)- block-ethylene glycol) (PLGA-PEG), at the air-water interface. PLGA-PEG at the air-water interface prepared by using an organic spreading solvent exhibits an extremely high surface pressure without the occurrence of desorption, making it an attractive candidate for a variety of uses in the areas mentioned above. The origin of this high surface pressure increase was shown to be due to the glass transition of the PLGA segments. The temperature at which this glass transition occurs for the PLGA segments of PLGA-PEG at the air-water interface was measured to be about 290 K by thermodynamic analysis based on the two-dimensional Maxwell relations. However, from an applications standpoint, spreading by an organic solvent greatly limits its scope of feasible uses. To explore the possibility of maintaining the excellent surface mechanical properties of the PLGA-PEG at the air-water interface while not using an organic solvent, we investigated the air-water interfacial properties of water-spread PLGA-PEG. When spread with water, it was shown that the initial micelles that form in the aqueous spreading solution remain intact even after being spread onto the air-water interface. Due to this different morphology, the surface pressure and monolayer stability were greatly reduced for the water-spread PLGA-PEG at the air-water interface. We used the Daoud and Cotton's blob scaling model to describe the desorption process of the water-spread PLGA-PEG at the air-water interface. From the scaling concept, it was shown that with higher PEG molecular weight and larger micelle size, the adsorption energy of the water-spread PLGA-PEG to the air-water interface was increased.


Asunto(s)
Cloroformo/química , Polietilenglicoles/química , Agua/química , Glicol de Etileno/química , Glicolatos/química , Ácido Láctico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química
8.
Bioconjug Chem ; 28(1): 171-182, 2017 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-27791362

RESUMEN

X-ray computed tomography (CT) is currently one of the most powerful, noninvasive, clinical in vivo imaging techniques, which has resulted from advances in both X-ray device and contrast enhancement technologies. The present study demonstrates, for the first time, that metal tungstates (such as CaWO4) are promising contrast agents for X-ray, radiation, and CT imaging, because of the high X-ray mass attenuation of tungsten (W). We have developed a method of formulation, in which CaWO4 (CWO) nanoparticles (NPs) are encapsulated within a biocompatible poly(ethylene glycol-b-d,l-lactic acid) (PEG-PLA) block copolymer (BCP) capsule. We show that these PEG-PLA-encapsulated CWO NPs (170 ± 10 nm hydrodynamic diameter) produce a higher CT contrast (by a factor of about 2) than commercial iodine-based radiocontrast agents (e.g., Iohexol) at identical molar concentrations of W or I atoms. PEG-PLA-coated CWO NPs are chemically stable and completely nontoxic. It was confirmed that the maximum tolerated dose (MTD) of this material in mice is significantly higher (250 ± 50 mg per kg body weight following a single intravenous (IV) administration) than, for instance, commercially available dextran-coated iron oxide nanoparticles that are currently used clinically as MRI contrast agents (MTD in mice ≈ 168 mg/kg per dose IV). IV-injected PEG-PLA/CWO NPs caused no histopathologic damage in major excretory organs (heart, liver, lungs, spleen, and kidney). When an IV dose of 100 mg/kg was given to mice, the blood circulation half-life was measured to be about 4 h, and more than 90% of the NPs were cleared from the mice within 24 h via the renal and hepatobiliary systems. When intratumorally administered, PEG-PLA-coated CWO NPs showed complete retention in a tumor-bearing mouse model (measurements were made up to 1 week). These results suggest that PEG-PLA-coated CWO NPs are promising materials for use in CT contrast.


Asunto(s)
Medios de Contraste/química , Nanopartículas , Conteo por Cintilación , Tomografía Computarizada por Rayos X/métodos , Animales , Relación Dosis-Respuesta a Droga , Ratones
9.
Phys Chem Chem Phys ; 19(16): 10663-10675, 2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28398439

RESUMEN

Glassy Langmuir polymer films exhibit a rapid increase in surface pressure at high compression. High relative humidity typically mitigates this increase in surface pressure. In an attempt to understand the origin of this phenomenon, we investigated the effects of relative humidity on surface pressure-area isotherm properties for four different types of polymers with similar bulk glass transition temperatures: poly(d,l-lactic-co-glycolic acid) (PLGA, Tg ≈ 45 °C), poly(vinyl acetate) (PVAc, Tg ≈ 41 °C), poly(n-propyl methacrylate) (PnPMA, Tg ≈ 41 °C), and poly(vinyl stearate) (PVS, Tg ≈ 47 °C, Tm ≈ 47 °C). Bulk PLGA and PVAc materials are slightly hygroscopic, although they are insoluble in water; the bulk glass transition temperatures of these polymers are decreased under high humidity conditions. Analogously, the surface pressures of Langmuir PLGA and PVAc films become significantly reduced under high relative humidity, which can, therefore, be attributed mainly to the plasticizing effect of humidity on the polymer. X-ray reflectivity (XR) measurements suggest that humidity, however, does not significantly affect the molecular-level structure of the Langmuir polymer film. Interestingly, in the case of PnPMA, although its bulk glass transition temperature is unaffected by humidity levels, Langmuir films formed from PnPMA show significantly decreased surface pressures at high humidity conditions. We confirmed that this result is not an artifact associated with surface pressure measurements; humidity does not influence the wetting characteristics of the Wilhelmy probe at the air-polymer-water interface. It appears that the humidity-dependent behavior of Langmuir PnPMA films can only be explained in terms of the effects of relative humidity on the rate of water evaporation and thus the temperature at the surface of the polymer film; high humidity suppresses the evaporation of water and thus increases the temperature of the polymer-coated interface, resulting in a softening of the polymer film. We experimentally confirmed that increasing the relative humidity from about 30-40% to about 85-90% has an equivalent effect on PnPMA surface pressure as increasing the temperature of the system by about 2 °C. A heat and mass transfer analysis supports this correspondence. Langmuir PVS films exhibit a completely different behavior than PLGA, PVAc and PnPMA systems; PVS forms isolated two-dimensional crystalline domains at the air-water interface, and their surface pressure-area behavior is commensurate to that of colloidal particles spread at the air-water interface. Humidity seems to affect the surface pressure of PVS through a mechanism similar to the PnPMA situation.

10.
Langmuir ; 31(51): 13821-33, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26633595

RESUMEN

Air-water interfacial monolayers of poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) exhibit an exponential increase in surface pressure under high monolayer compression. In order to understand the molecular origin of this behavior, a combined experimental and theoretical investigation (including surface pressure-area isotherm, X-ray reflectivity (XR) and interfacial rheological measurements, and a self-consistent field (SCF) theoretical analysis) was performed on air-water monolayers formed by a PLGA-PEG diblock copolymer and also by a nonglassy analogue of this diblock copolymer, poly((D,L-lactic acid-ran-glycolic acid-ran-caprolactone)-block-ethylene glycol) (PLGACL-PEG). The combined results of this study show that the two mechanisms, i.e., the glass transition of the collapsed PLGA film and the lateral repulsion of the PEG brush chains that occur simultaneously under lateral compression of the monolayer, are both responsible for the observed PLGA-PEG isotherm behavior. Upon cessation of compression, the high surface pressure of the PLGA-PEG monolayer typically relaxes over time with a stretched exponential decay, suggesting that in this diblock copolymer situation, the hydrophobic domain formed by the PLGA blocks undergoes glass transition in the high lateral compression state, analogously to the PLGA homopolymer monolayer. In the high PEG grafting density regime, the contribution of the PEG brush chains to the high monolayer surface pressure is significantly lower than what is predicted by the SCF model because of the many-body attraction among PEG segments (referred to in the literature as the "n-cluster" effects). The end-grafted PEG chains were found to be protein resistant even under the influence of the "n-cluster" effects.


Asunto(s)
Aire , Caproatos/química , Glicol de Etileno/química , Ácido Láctico/química , Lactonas/química , Polietilenglicoles/química , Poliglactina 910/química , Ácido Poliglicólico/química , Agua/química , Materiales Biocompatibles , Vidrio/química , Interacciones Hidrofóbicas e Hidrofílicas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Reología , Propiedades de Superficie
11.
Soft Matter ; 11(28): 5666-77, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26082950

RESUMEN

Constant rate compression isotherms of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA) show a distinct feature of an exponential increase in surface pressure in the high surface polymer concentration regime. We have previously demonstrated that this abrupt increase in surface pressure is linked to the glass transition of the polymer film, but the detailed mechanism of this process is not fully understood. In order to obtain a molecular-level understanding of this behavior, we performed extensive characterizations of the surface mechanical, structural and rheological properties of Langmuir PLGA films at the air-water interface, using combined experimental techniques including the Langmuir film balance, X-ray reflectivity and double-wall-ring interfacial rheometry methods. We observed that the mechanical and structural responses of the Langmuir PLGA films are significantly dependent on the rate of film compression; the glass transition was induced in the PLGA film only at fast compression rates. Surprisingly, we found that this deformation rate dependence is also dependent on the humidity of the environment. With water acting as a plasticizer for the PLGA material, the diffusion of water molecules through the PLGA film seems to be the key factor in the determination of the glass transformation properties and thus the mechanical response of the PLGA film against lateral compression. Based on our combined results, we hypothesize the following mechanism for the compression-induced glass transformation of the Langmuir PLGA film; (1) initially, a humidified/non-glassy PLGA film is formed in the full surface-coverage region (where the surface pressure shows a plateau) during compression; (2) further compression leads to the collapse of the PLGA chains and the formation of new surfaces on the air side of the film, and this newly formed top layer of the PLGA film is transiently glassy in character because the water evaporation rate in the top surface region is momentarily faster than the humidification rate (due to the initial roughness of the newly formed surface); (3) after some time, the top layer itself becomes humidified through diffusion of water from the subphase, and thus it becomes non-glassy, leading to the relaxation of the applied compressive stress.


Asunto(s)
Vidrio/química , Humedad , Ácido Láctico/química , Ácido Poliglicólico/química , Agua/química , Aire , Difusión , Peso Molecular , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Presión , Propiedades de Superficie , Temperatura
12.
Soft Matter ; 10(21): 3771-82, 2014 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-24695635

RESUMEN

We studied mixed poly(ethylene oxide) (PEO) and poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes. The question we attempted to answer was: when the chain grafting points are laterally mobile, how will this lateral mobility influence the structure and phase behavior of the mixed brush? Three different model mixed PEO/PDMAEMA brush systems were prepared: (1) a laterally mobile mixed brush by spreading onto the air-water interface a mixture of poly(ethylene oxide)-poly(n-butyl acrylate) (PEO-PnBA) and poly(2-(dimethylamino)ethyl methacrylate)-poly(n-butyl acrylate) (PDMAEMA-PnBA) diblock copolymers (the specific diblock copolymers used will be denoted as PEO113-PnBA100 and PDMAEMA118-PnBA100, where the subscripts refer to the number-average degrees of polymerization of the individual blocks), (2) a mobility-restricted (inseparable) version of the above mixed brush prepared using a PEO-PnBA-PDMAEMA triblock copolymer (denoted as PEO113-PnBA89-PDMAEMA120) having respective brush molecular weights matched with those of the diblock copolymers, and (3) a different laterally mobile mixed PEO and PDMAEMA brush prepared from a PEO113-PnBA100 and PDMAEMA200-PnBA103 diblock copolymer combination, which represents a further more height-mismatched mixed brush situation than described in (1). These three mixed brush systems were investigated by surface pressure-area isotherm and X-ray (XR) reflectivity measurements. These experimental data were analyzed within the theoretical framework of a continuum self-consistent field (SCF) polymer brush model. The combined experimental and theoretical results suggest that the mobile mixed brush derived using the PEO113-PnBA100 and PDMAEMA118-PnBA100 combination (i.e., mixed brush System #1) undergoes a lateral macroscopic phase separation at high chain grafting densities, whereas the more height-mismatched system (System #3) is only microscopically phase separated under comparable brush density conditions even though the lateral mobility of the grafted chains is unrestricted. The macroscopic phase separation observed in the laterally mobile mixed brush system is in contrast with the microphase separation behavior commonly observed in two-dimensional laterally mobile charged small molecule mixtures. Further study is needed to determine the detailed morphologies of the macro- and microphase-separated mixed PEO/PDMAEMA brushes.

13.
Int J Pharm ; 664: 124636, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39197798

RESUMEN

Protein therapeutics, particularly antibodies, depend on maintaining their native structures for optimal function. Hydrophobic interfaces, such as the air-water interface, can trigger protein aggregation and denaturation. While completely avoiding such interfacial exposures during manufacturing and storage is impractical, minimizing them is crucial for enhancing protein drug stability and extending shelf life. In the biologics industry, surfactants like polysorbates are commonly used as additives (excipients) to mitigate these undesirable interfacial exposures. However, polysorbates, the most prevalent choice, have recognized limitations in terms of polydispersity, purity, and stability, prompting the exploration of alternative excipients. The present study identifies poly(N-isopropylacrylamide)-poly(ethylene glycol) (PNIPAM-PEG) block copolymers as a promising alternative to polysorbates. Due to its stronger affinity for the air-water interface, PNIPAM-PEG significantly outperforms polysorbates in enhancing protein stability. This claim is supported by results from multiple tests. Accelerated dynamic light scattering (DLS) experiments demonstrate PNIPAM-PEG's exceptional efficacy in preserving IgG stability against surface-induced aggregation, surpassing conventional polysorbate excipients (Tween 80 and Tween 20) under high-temperature conditions. Additionally, circular dichroism (CD) spectroscopy results reveal conformational alterations associated with aggregation, with PNIPAM-PEG consistently demonstrates a greater protective effect by mitigating negative shifts at λ â‰… 220 nm, indicative of changes in secondary structure. Overall, this study positions PNIPAM-PEG as a promising excipient for antibody therapeutics, facilitating the development of more stable and effective biopharmaceuticals.


Asunto(s)
Resinas Acrílicas , Excipientes , Polietilenglicoles , Estabilidad Proteica , Polietilenglicoles/química , Excipientes/química , Resinas Acrílicas/química , Estabilidad de Medicamentos , Productos Biológicos/química , Inmunoglobulina G/química , Polisorbatos/química , Agregado de Proteínas
14.
J Colloid Interface Sci ; 661: 861-869, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38330658

RESUMEN

Hypothesis Conventional solvent exchange formulation methods face limitations when trying to control the final non-equilibrium size properties of block copolymer micelles containing a strongly hydrophobicity and a rigid block because the solvent conditions are not well controlled during micelle formation. Therefore, using an alternative formulation method, named Equilibration-Nanoprecipitation (ENP), in which micelles are formed under uniform solvent conditions, will significantly reduce the final dispersity compared a conventional solvent exchange method. EXPERIMENTAL: Size properties of the final aqueous micelle dispersions formed from the ENP method and a conventional solvent exchange are measured using DLS. Also, a parallel modelling study is completed to predict the final size distributions using both methods. Findings The experimental results demonstrate the ENP method is effective producing non-equilibrium micelles with low dispersity below the monodisperse polydispersity index (PDI) cutoff for DLS while the conventional solvent exchange method leads to significantly greater dispersity. Also the experimental results highlight ENP can be used to tune the final size properties which cannot be done using methods which do not properly control the micelle formation conditions. Additionally, the modelling study supports the utility of the ENP approach for producing monodisperse dispersions of nonequilibrium polymer micelles.

15.
Artículo en Inglés | MEDLINE | ID: mdl-37632203

RESUMEN

Rare but consistent reports of abscopal remission in patients challenge the notion that radiotherapy (RT) is a local treatment; radiation-induced cancer cell death can trigger activation and recruitment of dendritic cells to the primary tumor site, which subsequently initiates systemic immune responses against metastatic lesions. Although this abscopal effect was initially considered an anomaly, combining RT with immune checkpoint inhibitor therapies has been shown to greatly improve the incidence of abscopal responses via modulation of the immunosuppressive tumor microenvironment. Preclinical studies have demonstrated that nanomaterials can further improve the reliability and potency of the abscopal effect for various different types of cancer by (1) altering the cell death process to be more immunogenic, (2) facilitating the capture and transfer of tumor antigens from the site of cancer cell death to antigen-presenting cells, and (3) co-delivering immune checkpoint inhibitors along with radio-enhancing agents. Several unanswered questions remain concerning the exact mechanisms of action for nanomaterial-enhanced RT and for its combination with immune checkpoint inhibition and other immunostimulatory treatments in clinically relevant settings. The purpose of this article is to summarize key recent developments in this field and also highlight knowledge gaps that exist in this field. An improved mechanistic understanding will be critical for clinical translation of nanomaterials for advanced radio-immunotherapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Asunto(s)
Nanoestructuras , Neoplasias , Humanos , Reproducibilidad de los Resultados , Inmunoterapia , Neoplasias/radioterapia , Nanotecnología , Nanoestructuras/uso terapéutico , Microambiente Tumoral
16.
Int J Pharm ; 646: 123476, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37805148

RESUMEN

Polymer lung surfactant (PLS) is a polyethylene glycol (PEG)-brushed block copolymer micelle designed for pulmonary surfactant replacement therapy. Saccharides (e.g., sucrose and (2-hydroxypropyl)-ß-cyclodextrin) and water-soluble polymers (e.g., PEG), common excipients for lyophilization, were found to severely impair the surface activity of lyophilized PLS. To investigate the feasibility of excipient-free lyophilization of PLS, we studied the effects of both PLS material parameters and lyophilization operating parameters on the redispersibility and surface availability of reconstituted PLS, all without relying on excipients. We found that the redispersibility was improved by three factors; a faster cooling rate during the freezing stage reduced freezing stress; a higher PEG grafting density enhanced dissipating effects; and the absence of hydrophobic endgroups in the PEG block further prevented micelle aggregation. Consequently, the surface availability of PLS increased, enabling the micelle monolayer at the air/water interface to achieve a surface tension below 10 mN/m, which is a key pharmaceutical function of PLS. Moreover, the lyophilized micelles in powder form could be easily dispersed on water surfaces without the need for reconstitution, which opens up the possibility of inhalation delivery, a more patient-friendly administration method compared to instillation. The successful excipient-free lyophilization unlocks the potential of PLS for addressing acute respiratory distress syndrome (ARDS) and other pulmonary dysfunctions.


Asunto(s)
Micelas , Surfactantes Pulmonares , Humanos , Excipientes/química , Polímeros/química , Polietilenglicoles/química , Tensoactivos/química , Liofilización/métodos , Agua , Pulmón
17.
ACS Biomater Sci Eng ; 9(5): 2716-2730, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37079432

RESUMEN

If not properly managed, acute lung injuries, either through direct or indirect causes, have the potential to present serious risk for many patients worldwide. One of the mechanisms for the transition from acute lung injury (ALI) to the more serious acute respiratory distress syndrome (ARDS) is the deactivation of the native lung surfactant by injury-induced infiltrates to the alveolar space. Currently, there are no surfactant replacement therapies that are used to treat ALI and subsequent ARDS. In this paper, we present an indepth efficacy study of using a novel polymer lung surfactant (PLS, composed of poly(styrene-block-ethylene glycol) (PS-PEG) block copolymer micelles), which has unique properties compared to other tested surfactant replacements, in two different mouse models of lung injury. The results demonstrate that pharyngeal administration of PLS after the instillation of either acid (HCl) or lipopolysaccharide (LPS) can decrease the severity of lung injury as measured by multiple injury markers.


Asunto(s)
Lesión Pulmonar Aguda , Surfactantes Pulmonares , Síndrome de Dificultad Respiratoria , Ratones , Animales , Polímeros/farmacología , Polímeros/uso terapéutico , Pulmón , Surfactantes Pulmonares/farmacología , Surfactantes Pulmonares/uso terapéutico , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/etiología , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/complicaciones
18.
Biomater Sci ; 11(18): 6311-6324, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37552121

RESUMEN

Photodynamic therapy (PDT) using 5-aminolevulinic acid (ALA) prodrug is a clinically tried and proven treatment modality for surface-level lesions. However, its use for deep-seated tumors has been limited due to the poor penetration depth of visible light needed to activate the photosensitizer protoporphyrin IX (PPIX), which is produced from ALA metabolism. Herein, we report the usage of poly(ethylene glycol-b-lactic acid) (PEG-PLA)-encapsulated calcium tungstate (CaWO4, CWO for short) nanoparticles (PEG-PLA/CWO NPs) as energy transducers for X-ray-activated PDT using ALA. Owing to the spectral overlap between radioluminescence afforded by the CWO core and the absorbance of PPIX, these NPs can serve as an in situ visible light activation source during radiotherapy (RT), thereby mitigating the limitation of penetration depth. We demonstrate that this effect is observed across different cell lines with varying radio-sensitivity. Importantly, both PPIX and PEG-PLA/CWO NPs exhibit no significant toxicities at therapeutic doses in the absence of radiation. To assess the efficacy of this approach, we conducted a study using a syngeneic mouse model subcutaneously implanted with inherently radio-resistant 4T1 tumors. The results show a significantly improved prognosis compared to conventional RT, even with as few as 2 fractions of 4 Gy X-rays. Taken together, these results suggest that PEG-PLA/CWO NPs are promising agents for application of ALA-PDT in deep-seated tumors, thereby significantly expanding the utility of the already established treatment strategy.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Profármacos , Animales , Ratones , Ácido Aminolevulínico/farmacología , Ácido Aminolevulínico/uso terapéutico , Profármacos/farmacología , Profármacos/uso terapéutico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Neoplasias/tratamiento farmacológico , Nanopartículas/uso terapéutico , Línea Celular Tumoral
19.
Nat Commun ; 14(1): 2266, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37080958

RESUMEN

Glioblastoma (GBM) is one of the most aggressive and lethal solid tumors in human. While efficacious therapeutics, such as emerging chimeric antigen receptor (CAR)-T cells and chemotherapeutics, have been developed to treat various cancers, their effectiveness in GBM treatment has been hindered largely by the blood-brain barrier and blood-brain-tumor barriers. Human neutrophils effectively cross physiological barriers and display effector immunity against pathogens but the short lifespan and resistance to genome editing of primary neutrophils have limited their broad application in immunotherapy. Here we genetically engineer human pluripotent stem cells with CRISPR/Cas9-mediated gene knock-in to express various anti-GBM CAR constructs with T-specific CD3ζ or neutrophil-specific γ-signaling domains. CAR-neutrophils with the best anti-tumor activity are produced to specifically and noninvasively deliver and release tumor microenvironment-responsive nanodrugs to target GBM without the need to induce additional inflammation at the tumor sites. This combinatory chemo-immunotherapy exhibits superior and specific anti-GBM activities, reduces off-target drug delivery and prolongs lifespan in female tumor-bearing mice. Together, this biomimetic CAR-neutrophil drug delivery system is a safe, potent and versatile platform for treating GBM and possibly other devastating diseases.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Ratones , Femenino , Humanos , Animales , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Inmunoterapia Adoptiva , Neutrófilos , Linfocitos T , Microambiente Tumoral , Neoplasias Encefálicas/tratamiento farmacológico , Inmunoterapia , Nanopartículas/uso terapéutico
20.
Langmuir ; 28(31): 11555-66, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22830444

RESUMEN

It has been reported that the surface pressure-area isotherm of poly(D,L-lactic acid-ran-glycolic acid) (PLGA) at the air-water interface exhibits several interesting features: (1) a plateau at intermediate compression levels, (2) a sharp rise in surface pressure upon further compression, and (3) marked surface pressure-area hysteresis during compression-expansion cycles. To investigate the molecular origin of this behavior, we conducted an extensive set of surface pressure and AFM imaging measurements with PLGA materials having several different molecular weights and also a poly(D,L-lactic acid-ran-glycolic acid-ran-caprolactone) (PLGACL) material in which the caprolactone monomers were incorporated as a plasticizing component. The results suggest that (i) the plateau in the surface pressure-area isotherm of PLGA (or PLGACL) occurs because of the formation (and collapse) of a continuous monolayer of the polymer under continuous compression; (ii) the PLGA monolayer becomes significantly resistant to compression at high compression because under that condition the collapsed domains become large enough to become glassy (such behavior was not observed in the nonglassy PLGACL sample); and (iii) the isotherm hysteresis is due to a coarsening of the collapsed domains that occurs under high-compression conditions. We also investigated the monolayer properties of PEG-PLGA and PEG-PLGACL diblock copolymers. The results demonstrate that the tendency of PLGA (or PLGACL) to spread on water allows the polymer to be used as an anchoring block to form a smooth biodegradable monolayer of block copolymers at the air-water interface. These diblock copolymer monolayers exhibit protein resistance.


Asunto(s)
Materiales Biocompatibles/síntesis química , Ácido Láctico/síntesis química , Poliésteres/química , Polietilenglicoles/química , Ácido Poliglicólico/síntesis química , Agua/química , Aire , Caproatos/química , Lactonas/química , Ensayo de Materiales , Microscopía de Fuerza Atómica , Peso Molecular , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Presión , Propiedades de Superficie , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA