Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochemistry ; 57(5): 684-695, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29240404

RESUMEN

Many regulatory proteins bind peptide regions of target proteins and modulate their activity. Such regulatory proteins can often interact with highly diverse target peptides. In many instances, it is not known if the peptide-binding interface discriminates targets in a biological context, or whether biological specificity is achieved exclusively through external factors such as subcellular localization. We used an evolutionary biochemical approach to distinguish these possibilities for two such low-specificity proteins: S100A5 and S100A6. We used isothermal titration calorimetry to study the binding of peptides with diverse sequence and biochemistry to human S100A5 and S100A6. These proteins bound distinct, but overlapping, sets of peptide targets. We then studied the peptide binding properties of orthologs sampled from across five amniote species. Binding specificity was conserved along all lineages, for the last 320 million years, despite the low specificity of each protein. We used ancestral sequence reconstruction to determine the binding specificity of the last common ancestor of the paralogs. The ancestor bound the entire set of peptides bound by modern S100A5 and S100A6 proteins, suggesting that paralog specificity evolved via subfunctionalization. To rule out the possibility that specificity is conserved because it is difficult to modify, we identified a single historical mutation that, when reverted in human S100A5, gave it the ability to bind an S100A6-specific peptide. These results reveal strong evolutionary constraints on peptide binding specificity. Despite being able to bind a large number of targets, the specificity of S100 peptide interfaces is likely important for the biology of these proteins.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Evolución Molecular , Proteína A6 de Unión a Calcio de la Familia S100/metabolismo , Proteínas S100/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Señalización del Calcio , Calorimetría/métodos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Secuencia Conservada , Duplicación de Gen , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Mutación Missense , Biblioteca de Péptidos , Péptidos/metabolismo , Filogenia , Proteínas Recombinantes/metabolismo , Proteína A6 de Unión a Calcio de la Familia S100/química , Proteína A6 de Unión a Calcio de la Familia S100/genética , Proteínas S100/química , Proteínas S100/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Vertebrados/genética
2.
Protein Sci ; 29(11): 2259-2273, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32979254

RESUMEN

Many proteins interact with short linear regions of target proteins. For some proteins, however, it is difficult to identify a well-defined sequence motif that defines its target peptides. To overcome this difficulty, we used supervised machine learning to train a model that treats each peptide as a collection of easily-calculated biochemical features rather than as an amino acid sequence. As a test case, we dissected the peptide-recognition rules for human S100A5 (hA5), a low-specificity calcium binding protein. We trained a Random Forest model against a recently released, high-throughput phage display dataset collected for hA5. The model identifies hydrophobicity and shape complementarity, rather than polar contacts, as the primary determinants of peptide binding specificity in hA5. We tested this hypothesis by solving a crystal structure of hA5 and through computational docking studies of diverse peptides onto hA5. These structural studies revealed that peptides exhibit multiple binding modes at the hA5 peptide interface-all of which have few polar contacts with hA5. Finally, we used our trained model to predict new, plausible binding targets in the human proteome. This revealed a fragment of the protein α-1-syntrophin that binds to hA5. Our work helps better understand the biochemistry and biology of hA5, as well as demonstrating how high-throughput experiments coupled with machine learning of biochemical features can reveal the determinants of binding specificity in low-specificity proteins.


Asunto(s)
Proteínas de Unión al Calcio/química , Proteínas de la Membrana/química , Modelos Moleculares , Proteínas Musculares/química , Péptidos/química , Proteínas S100/química , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Cristalografía por Rayos X , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Biblioteca de Péptidos , Péptidos/genética , Péptidos/metabolismo , Unión Proteica , Proteínas S100/genética , Proteínas S100/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA