RESUMEN
All cancers emerge after a period of clonal selection and subsequent clonal expansion. Although the evolutionary principles imparted by genetic intratumour heterogeneity are becoming increasingly clear1, little is known about the non-genetic mechanisms that contribute to intratumour heterogeneity and malignant clonal fitness2. Here, using single-cell profiling and lineage tracing (SPLINTR)-an expressed barcoding strategy-we trace isogenic clones in three clinically relevant mouse models of acute myeloid leukaemia. We find that malignant clonal dominance is a cell-intrinsic and heritable property that is facilitated by the repression of antigen presentation and increased expression of the secretory leukocyte peptidase inhibitor gene (Slpi), which we genetically validate as a regulator of acute myeloid leukaemia. Increased transcriptional heterogeneity is a feature that enables clonal fitness in diverse tissues and immune microenvironments and in the context of clonal competition between genetically distinct clones. Similar to haematopoietic stem cells3, leukaemia stem cells (LSCs) display heritable clone-intrinsic properties of high, and low clonal output that contribute to the overall tumour mass. We demonstrate that LSC clonal output dictates sensitivity to chemotherapy and, although high- and low-output clones adapt differently to therapeutic pressure, they coordinately emerge from minimal residual disease with increased expression of the LSC program. Together, these data provide fundamental insights into the non-genetic transcriptional processes that underpin malignant clonal fitness and may inform future therapeutic strategies.
Asunto(s)
Competencia Celular , Células Clonales/patología , Leucemia Mieloide Aguda/patología , Análisis de la Célula Individual , Animales , Competencia Celular/efectos de los fármacos , Línea Celular , Linaje de la Célula/efectos de los fármacos , Células Clonales/efectos de los fármacos , Células Clonales/metabolismo , Femenino , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Ratones , Ratones Endogámicos C57BL , Inhibidor Secretorio de Peptidasas Leucocitarias/metabolismoRESUMEN
The chromatin environment plays a central role in regulating developmental gene expression in metazoans. Yet, the ancestral regulatory landscape of metazoan embryogenesis is unknown. Here, we generate chromatin accessibility profiles for six embryonic, plus larval and adult stages in the sponge Amphimedon queenslandica These profiles are reproducible within stages, reflect histone modifications, and identify transcription factor (TF) binding sequence motifs predictive of cis-regulatory elements operating during embryogenesis in other metazoans, but not the unicellular relative Capsaspora Motif analysis of chromatin accessibility profiles across Amphimedon embryogenesis identifies three major developmental periods. As in bilaterian embryogenesis, early development in Amphimedon involves activating and repressive chromatin in regions both proximal and distal to transcription start sites. Transcriptionally repressive elements ("silencers") are prominent during late embryogenesis. They coincide with an increase in cis-regulatory regions harboring metazoan TF binding motifs, as well as an increase in the expression of metazoan-specific genes. Changes in chromatin state and gene expression in Amphimedon suggest the conservation of distal enhancers, dynamically silenced chromatin, and TF-DNA binding specificity in animal embryogenesis.
Asunto(s)
Cromatina , Código de Histonas , Animales , Cromatina/genética , ADN/metabolismo , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Unión ProteicaRESUMEN
Hematopoietic stem and progenitor cells (HSPCs) rely on a complex interplay among transcription factors (TFs) to regulate differentiation into mature blood cells. A heptad of TFs (FLI1, ERG, GATA2, RUNX1, TAL1, LYL1, LMO2) bind regulatory elements in bulk CD34+ HSPCs. However, whether specific heptad-TF combinations have distinct roles in regulating hematopoietic differentiation remains unknown. We mapped genome-wide chromatin contacts (HiC, H3K27ac, HiChIP), chromatin modifications (H3K4me3, H3K27ac, H3K27me3) and 10 TF binding profiles (heptad, PU.1, CTCF, STAG2) in HSPC subsets (stem/multipotent progenitors plus common myeloid, granulocyte macrophage, and megakaryocyte erythrocyte progenitors) and found TF occupancy and enhancer-promoter interactions varied significantly across cell types and were associated with cell-type-specific gene expression. Distinct regulatory elements were enriched with specific heptad-TF combinations, including stem-cell-specific elements with ERG, and myeloid- and erythroid-specific elements with combinations of FLI1, RUNX1, GATA2, TAL1, LYL1, and LMO2. Furthermore, heptad-occupied regions in HSPCs were subsequently bound by lineage-defining TFs, including PU.1 and GATA1, suggesting that heptad factors may prime regulatory elements for use in mature cell types. We also found that enhancers with cell-type-specific heptad occupancy shared a common grammar with respect to TF binding motifs, suggesting that combinatorial binding of TF complexes was at least partially regulated by features encoded in DNA sequence motifs. Taken together, this study comprehensively characterizes the gene regulatory landscape in rare subpopulations of human HSPCs. The accompanying data sets should serve as a valuable resource for understanding adult hematopoiesis and a framework for analyzing aberrant regulatory networks in leukemic cells.
Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal , Células Madre Hematopoyéticas , Humanos , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Células Madre Hematopoyéticas/metabolismo , Regulación de la Expresión Génica , Hematopoyesis/genética , Cromatina/metabolismoRESUMEN
The cardiac endothelium influences ventricular chamber development by coordinating trabeculation and compaction. However, the endothelial-specific molecular mechanisms mediating this coordination are not fully understood. Here, we identify the Sox7 transcription factor as a critical cue instructing cardiac endothelium identity during ventricular chamber development. Endothelial-specific loss of Sox7 function in mice results in cardiac ventricular defects similar to non-compaction cardiomyopathy, with a change in the proportions of trabecular and compact cardiomyocytes in the mutant hearts. This phenotype is paralleled by abnormal coronary artery formation. Loss of Sox7 function disrupts the transcriptional regulation of the Notch pathway and connexins 37 and 40, which govern coronary arterial specification. Upon Sox7 endothelial-specific deletion, single-nuclei transcriptomics analysis identifies the depletion of a subset of Sox9/Gpc3-positive endocardial progenitor cells and an increase in erythro-myeloid cell lineages. Fate mapping analysis reveals that a subset of Sox7-null endothelial cells transdifferentiate into hematopoietic but not cardiomyocyte lineages. Our findings determine that Sox7 maintains cardiac endothelial cell identity, which is crucial to the cellular cross-talk that drives ventricular compaction and coronary artery development.
Asunto(s)
Vasos Coronarios , Células Endoteliales , Animales , Ratones , Vasos Coronarios/metabolismo , Células Endoteliales/metabolismo , Miocitos Cardíacos/metabolismo , Regulación de la Expresión Génica , Endotelio/metabolismo , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismoRESUMEN
Precise patterns of gene expression are driven by interactions between transcription factors, regulatory DNA sequences, and chromatin. How DNA mutations affecting any one of these regulatory "layers" are buffered or propagated to gene expression remains unclear. To address this, we quantified allele-specific changes in chromatin accessibility, histone modifications, and gene expression in F1 embryos generated from eight Drosophila crosses at three embryonic stages, yielding a comprehensive data set of 240 samples spanning multiple regulatory layers. Genetic variation (allelic imbalance) impacts gene expression more frequently than chromatin features, with metabolic and environmental response genes being most often affected. Allelic imbalance in cis-regulatory elements (enhancers) is common and highly heritable, yet its functional impact does not generally propagate to gene expression. When it does, genetic variation impacts RNA levels through two alternative mechanisms involving either H3K4me3 or chromatin accessibility and H3K27ac. Changes in RNA are more predictive of variation in H3K4me3 than vice versa, suggesting a role for H3K4me3 downstream from transcription. The impact of a substantial proportion of genetic variation is consistent across embryonic stages, with 50% of allelic imbalanced features at one stage being also imbalanced at subsequent developmental stages. Crucially, buffering, as well as the magnitude and evolutionary impact of genetic variants, is influenced by regulatory complexity (i.e., number of enhancers regulating a gene), with transcription factors being most robust to cis-acting, but most influenced by trans-acting, variation.
RESUMEN
Importance: Early onset of myopia is associated with high myopia later in life, and myopia is irreversible once developed. Objective: To evaluate the efficacy of low-concentration atropine eyedrops at 0.05% and 0.01% concentration for delaying the onset of myopia. Design, Setting, and Participants: This randomized, placebo-controlled, double-masked trial conducted at the Chinese University of Hong Kong Eye Centre enrolled 474 nonmyopic children aged 4 through 9 years with cycloplegic spherical equivalent between +1.00 D to 0.00 D and astigmatism less than -1.00 D. The first recruited participant started treatment on July 11, 2017, and the last participant was enrolled on June 4, 2020; the date of the final follow-up session was June 4, 2022. Interventions: Participants were assigned at random to the 0.05% atropine (n = 160), 0.01% atropine (n = 159), and placebo (n = 155) groups and had eyedrops applied once nightly in both eyes over 2 years. Main Outcomes and Measures: The primary outcomes were the 2-year cumulative incidence rate of myopia (cycloplegic spherical equivalent of at least -0.50 D in either eye) and the percentage of participants with fast myopic shift (spherical equivalent myopic shift of at least 1.00 D). Results: Of the 474 randomized patients (mean age, 6.8 years; 50% female), 353 (74.5%) completed the trial. The 2-year cumulative incidence of myopia in the 0.05% atropine, 0.01% atropine, and placebo groups were 28.4% (33/116), 45.9% (56/122), and 53.0% (61/115), respectively, and the percentages of participants with fast myopic shift at 2 years were 25.0%, 45.1%, and 53.9%. Compared with the placebo group, the 0.05% atropine group had significantly lower 2-year cumulative myopia incidence (difference, 24.6% [95% CI, 12.0%-36.4%]) and percentage of patients with fast myopic shift (difference, 28.9% [95% CI, 16.5%-40.5%]). Compared with the 0.01% atropine group, the 0.05% atropine group had significantly lower 2-year cumulative myopia incidence (difference, 17.5% [95% CI, 5.2%-29.2%]) and percentage of patients with fast myopic shift (difference, 20.1% [95% CI, 8.0%-31.6%]). The 0.01% atropine and placebo groups were not significantly different in 2-year cumulative myopia incidence or percentage of patients with fast myopic shift. Photophobia was the most common adverse event and was reported by 12.9% of participants in the 0.05% atropine group, 18.9% in the 0.01% atropine group, and 12.2% in the placebo group in the second year. Conclusions and Relevance: Among children aged 4 to 9 years without myopia, nightly use of 0.05% atropine eyedrops compared with placebo resulted in a significantly lower incidence of myopia and lower percentage of participants with fast myopic shift at 2 years. There was no significant difference between 0.01% atropine and placebo. Further research is needed to replicate the findings, to understand whether this represents a delay or prevention of myopia, and to assess longer-term safety. Trial Registration: Chinese Clinical Trial Registry: ChiCTR-IPR-15006883.
Asunto(s)
Atropina , Miopía , Niño , Femenino , Humanos , Masculino , Atropina/administración & dosificación , Atropina/efectos adversos , Atropina/uso terapéutico , Progresión de la Enfermedad , Incidencia , Midriáticos/efectos adversos , Miopía/diagnóstico , Miopía/prevención & control , Soluciones Oftálmicas/administración & dosificación , Soluciones Oftálmicas/efectos adversos , Soluciones Oftálmicas/uso terapéutico , Refracción Ocular , Edad de Inicio , Método Doble Ciego , PreescolarRESUMEN
To understand the evolutionary dynamics between transcription factor (TF) binding and gene expression in mammals, we compared transcriptional output and the binding intensities for three tissue-specific TFs in livers from four closely related mouse species. For each transcription factor, TF-dependent genes and the TF binding sites most likely to influence mRNA expression were identified by comparing mRNA expression levels between wild-type and TF knockout mice. Independent evolution was observed genome-wide between the rate of change in TF binding and the rate of change in mRNA expression across taxa, with the exception of a small number of TF-dependent genes. We also found that binding intensities are preferentially conserved near genes whose expression is dependent on the TF, and the conservation is shared among binding peaks in close proximity to each other near the TSS. Expression of TF-dependent genes typically showed an increased sensitivity to changes in binding levels as measured by mRNA abundance. Taken together, these results highlight a significant tolerance to evolutionary changes in TF binding intensity in mammalian transcriptional networks and suggest that some TF-dependent genes may be largely regulated by a single TF across evolution.
Asunto(s)
Evolución Biológica , Regulación de la Expresión Génica , Mamíferos/genética , Mamíferos/metabolismo , Factores de Transcripción/metabolismo , Animales , Sitios de Unión , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Inmunoprecipitación de Cromatina , Evolución Molecular , Variación Genética , Factor Nuclear 4 del Hepatocito/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , Ratones Noqueados , Modelos Estadísticos , Unión Proteica , Especificidad de la Especie , Sitio de Iniciación de la Transcripción , Transcripción GenéticaRESUMEN
BACKGROUND: The α2-adrenergic sedative/anesthetic agent dexmedetomidine exerts biphasic effects on isolated arteries, causing endothelium-dependent relaxations at concentrations at or below 30 nM, followed by contractions at higher concentrations. L-arginine is a common substrate of endothelial nitric oxide synthase and arginases. This study was designed to investigate the role of L-arginine in modulating the overall vascular response to dexmedetomidine. METHODS: Isometric tension was measured in isolated aortic rings of Sprague Dawley rats. Cumulative concentrations of dexmedetomidine (10 nM to 10 µM) were added to quiescent rings (with and without endothelium) after previous incubation with vehicle, N-nitro-L-arginine methyl ester hydrochloride (L-NAME; nitric oxide synthase inhibitor), prazosin (α1-adrenergic antagonist), rauwolscine (α2-adrenergic antagonist), L-arginine, (S)-(2-boronethyl)-L-cysteine hydrochloride (arginase inhibitor), N-hydroxy-L-arginine (arginase inhibitor), urea and/or ornithine. In some preparations, immunofluorescent staining, immunoblotting, or measurement of urea content were performed. RESULTS: Dexmedetomidine did not contract control rings with endothelium but evoked concentration-dependent increases in tension in such rings treated with L-NAME (Emax 50 ± 4%) or after endothelium-removal (Emax 74 ± 5%; N = 7 to 12). Exogenous L-arginine augmented the dexmedetomidine-induced contractions in the presence of L-NAME (Emax 75 ± 3%). This potentiation was abolished by (S)-(2-boronethyl)-L-cysteine hydrochloride (Emax 16 ± 4%) and N-hydroxy-L-arginine (Emax 18 ± 4%). Either urea or ornithine, the downstream arginase products, had a similar potentiating effect as L-arginine. Immunoassay measurements demonstrated an upregulation of arginase I by L-arginine treatment in the presence of L-NAME (N = 4). CONCLUSIONS: These results suggest that when vascular nitric oxide homeostasis is impaired, the potentiation of the vasoconstrictor effect of dexmedetomidine by L-arginine depends on arginase activity and the production of urea and ornithine.
Asunto(s)
Aorta Torácica/efectos de los fármacos , Arginasa/farmacología , Arginina/farmacología , Dexmedetomidina/administración & dosificación , Hipnóticos y Sedantes/administración & dosificación , Animales , Técnica del Anticuerpo Fluorescente , Immunoblotting , Masculino , Modelos Animales , Ratas , Ratas Sprague-DawleyRESUMEN
BACKGROUND: Circular chromosome conformation capture (4C) has provided important insights into three dimensional (3D) genome organization and its critical impact on the regulation of gene expression. We developed a new quantitative framework based on polymer physics for the analysis of paired-end sequencing 4C (PE-4Cseq) data. We applied this strategy to the study of chromatin interaction changes upon a 4.3 Mb DNA deletion in mouse region 4E2. RESULTS: A significant number of differentially interacting regions (DIRs) and chromatin compaction changes were detected in the deletion chromosome compared to a wild-type (WT) control. Selected DIRs were validated by 3D DNA FISH experiments, demonstrating the robustness of our pipeline. Interestingly, significant overlaps of DIRs with CTCF/Smc1 binding sites and differentially expressed genes were observed. CONCLUSIONS: Altogether, our PE-4Cseq analysis pipeline provides a comprehensive characterization of DNA deletion effects on chromatin structure and function.
Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Biología Computacional , Eliminación de Secuencia , Alelos , Animales , Cromosomas de los Mamíferos , Biología Computacional/métodos , Variaciones en el Número de Copia de ADN , Expresión Génica , Genómica/métodos , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Hibridación Fluorescente in Situ , Ratones , Polimorfismo de Nucleótido Simple , Reproducibilidad de los ResultadosRESUMEN
We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation.
Asunto(s)
Evolución Molecular , Genoma/genética , Ornitorrinco/genética , Animales , Composición de Base , Dentición , Femenino , Impresión Genómica/genética , Humanos , Inmunidad/genética , Masculino , Mamíferos/genética , MicroARNs/genética , Proteínas de la Leche/genética , Filogenia , Ornitorrinco/inmunología , Ornitorrinco/fisiología , Receptores Odorantes/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Reptiles/genética , Análisis de Secuencia de ADN , Espermatozoides/metabolismo , Ponzoñas/genética , Zona Pelúcida/metabolismoRESUMEN
The platypus is a venomous monotreme. Male platypuses possess a spur on their hind legs that is connected to glands in the pelvic region. They produce venom only during the breeding season, presumably to fight off conspecifics. We have taken advantage of this unique seasonal production of venom to compare the transcriptomes of in- and out-of-season venom glands, in conjunction with proteomic analysis, to identify previously undiscovered venom genes. Comparison of the venom glands revealed distinct gene expression profiles that are consistent with changes in venom gland morphology and venom volumes in and out of the breeding season. Venom proteins were identified through shot-gun sequenced venom proteomes of three animals using RNA-seq-derived transcripts for peptide-spectral matching. 5,157 genes were expressed in the venom glands, 1,821 genes were up-regulated in the in-season gland, and 10 proteins were identified in the venom. New classes of platypus-venom proteins identified included antimicrobials, amide oxidase, serpin protease inhibitor, proteins associated with the mammalian stress response pathway, cytokines, and other immune molecules. Five putative toxins have only been identified in platypus venom: growth differentiation factor 15, nucleobindin-2, CD55, a CXC-chemokine, and corticotropin-releasing factor-binding protein. These novel venom proteins have potential biomedical and therapeutic applications and provide insights into venom evolution.
Asunto(s)
Estructuras Animales/metabolismo , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Péptidos/metabolismo , Ornitorrinco/genética , Proteómica , Ponzoñas/metabolismo , Animales , Masculino , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Ornitorrinco/metabolismo , Proteínas/genética , Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estaciones del Año , Ponzoñas/genéticaRESUMEN
Enhancers are fast-evolving genomic sequences that control spatiotemporal gene expression patterns. By examining enhancer turnover across mammalian species and in multiple tissue types, we uncover a relationship between the emergence of enhancers and genome organization as a function of germline DNA replication time. While enhancers are most abundant in euchromatic regions, enhancers emerge almost twice as often in late compared to early germline replicating regions, independent of transposable elements. Using a deep learning sequence model, we demonstrate that new enhancers are enriched for mutations that alter transcription factor (TF) binding. Recently evolved enhancers appear to be mostly neutrally evolving and enriched in eQTLs. They also show more tissue specificity than conserved enhancers, and the TFs that bind to these elements, as inferred by binding sequences, also show increased tissue-specific gene expression. We find a similar relationship with DNA replication time in cancer, suggesting that these observations may be time-invariant principles of genome evolution. Our work underscores that genome organization has a profound impact in shaping mammalian gene regulation.
Asunto(s)
Replicación del ADN , Elementos de Facilitación Genéticos , Animales , Humanos , Evolución Molecular , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ratones , Regulación de la Expresión Génica , Especificidad de Órganos/genética , Mutación , Genoma/genética , Elementos Transponibles de ADN/genéticaRESUMEN
The challenge of systematically modifying and optimizing regulatory elements for precise gene expression control is central to modern genomics and synthetic biology. Advancements in generative AI have paved the way for designing synthetic sequences with the aim of safely and accurately modulating gene expression. We leverage diffusion models to design context-specific DNA regulatory sequences, which hold significant potential toward enabling novel therapeutic applications requiring precise modulation of gene expression. Our framework uses a cell type-specific diffusion model to generate synthetic 200 bp regulatory elements based on chromatin accessibility across different cell types. We evaluate the generated sequences based on key metrics to ensure they retain properties of endogenous sequences: transcription factor binding site composition, potential for cell type-specific chromatin accessibility, and capacity for sequences generated by DNA diffusion to activate gene expression in different cell contexts using state-of-the-art prediction models. Our results demonstrate the ability to robustly generate DNA sequences with cell type-specific regulatory potential. DNA-Diffusion paves the way for revolutionizing a regulatory modulation approach to mammalian synthetic biology and precision gene therapy.
RESUMEN
Aging is associated with a decline in the number and fitness of adult stem cells 1-4 . Aging-associated loss of stemness is posited to suppress tumorigenesis 5,6 , but this hypothesis has not been tested in vivo . Here, using physiologically aged autochthonous genetically engineered mouse models and primary cells 7,8 , we demonstrate aging suppresses lung cancer initiation and progression by degrading stemness of the alveolar cell of origin. This phenotype is underpinned by aging-associated induction of the transcription factor NUPR1 and its downstream target lipocalin-2 in the cell of origin in mice and humans, leading to a functional iron insufficiency in the aged cells. Genetic inactivation of the NUPR1-lipocalin-2 axis or iron supplementation rescue stemness and promote tumorigenic potential of aged alveolar cells. Conversely, targeting the NUPR1- lipocalin-2 axis is detrimental to young alveolar cells via induction of ferroptosis. We find that aging-associated DNA hypomethylation at specific enhancer sites associates with elevated NUPR1 expression, which is recapitulated in young alveolar cells by inhibition of DNA methylation. We uncover that aging drives a functional iron insufficiency, which leads to loss of stemness and tumorigenesis, but promotes resistance to ferroptosis. These findings have significant implications for the therapeutic modulation of cellular iron homeostasis in regenerative medicine and in cancer prevention. Furthermore, our findings are consistent with a model whereby most human cancers initiate in young individuals, revealing a critical window for such cancer prevention efforts.
RESUMEN
Three-dimensional (3D) epigenome remodeling is an important mechanism of gene deregulation in cancer. However, its potential as a target to counteract therapy resistance remains largely unaddressed. Here, we show that epigenetic therapy with decitabine (5-Aza-mC) suppresses tumor growth in xenograft models of pre-clinical metastatic estrogen receptor positive (ER+) breast tumor. Decitabine-induced genome-wide DNA hypomethylation results in large-scale 3D epigenome deregulation, including de-compaction of higher-order chromatin structure and loss of boundary insulation of topologically associated domains. Significant DNA hypomethylation associates with ectopic activation of ER-enhancers, gain in ER binding, creation of new 3D enhancer-promoter interactions and concordant up-regulation of ER-mediated transcription pathways. Importantly, long-term withdrawal of epigenetic therapy partially restores methylation at ER-enhancer elements, resulting in a loss of ectopic 3D enhancer-promoter interactions and associated gene repression. Our study illustrates the potential of epigenetic therapy to target ER+ endocrine-resistant breast cancer by DNA methylation-dependent rewiring of 3D chromatin interactions, which are associated with the suppression of tumor growth.
Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Decitabina/farmacología , Decitabina/uso terapéutico , Decitabina/metabolismo , Epigenoma , Metilación de ADN/genética , Cromatina , Epigénesis Genética , ADN/metabolismo , Regulación Neoplásica de la Expresión GénicaRESUMEN
Gene duplication followed by adaptive selection is believed to be the primary driver of venom evolution. However, to date, no studies have evaluated the importance of gene duplications for venom evolution using a genomic approach. The availability of a sequenced genome and a venom gland transcriptome for the enigmatic platypus provides a unique opportunity to explore the role that gene duplication plays in venom evolution. Here, we identify gene duplication events and correlate them with expressed transcripts in an in-season venom gland. Gene duplicates (1,508) were identified. These duplicated pairs (421), including genes that have undergone multiple rounds of gene duplications, were expressed in the venom gland. The majority of these genes are involved in metabolism and protein synthesis not toxin functions. Twelve secretory genes including serine proteases, metalloproteinases, and protease inhibitors likely to produce symptoms of envenomation such as vasodilation and pain were detected. Only 16 of 107 platypus genes with high similarity to known toxins evolved through gene duplication. Platypus venom C-type natriuretic peptides and nerve growth factor do not possess lineage-specific gene duplicates. Extensive duplications, believed to increase the potency of toxic content and promote toxin diversification, were not found. This is the first study to take a genome-wide approach in order to examine the impact of gene duplication on venom evolution. Our findings support the idea that adaptive selection acts on gene duplicates to drive the independent evolution and functional diversification of similar venom genes in venomous species. However, gene duplications alone do not explain the "venome" of the platypus. Other mechanisms, such as alternative splicing and mutation, may be important in venom innovation.
Asunto(s)
Evolución Molecular , Duplicación de Gen , Ornitorrinco/genética , Ponzoñas/genética , Animales , Análisis por Conglomerados , Bases de Datos Genéticas , Masculino , Filogenia , Selección GenéticaRESUMEN
Within the mammalian immune system, natural killer (NK) cells contribute to the first line of defence against infectious agents and tumours. Their activity is regulated, in part, by cell surface NK cell receptors. NK receptors can be divided into two unrelated, but functionally analogous superfamilies based on the structure of their extracellular ligand-binding domains. Receptors belonging to the C-type lectin superfamily are predominantly encoded in the natural killer complex (NKC), while receptors belonging to the immunoglobulin superfamily are predominantly encoded in the leukocyte receptor complex (LRC). Natural killer cell receptors are emerging as a rapidly evolving gene family which can display significant intra- and interspecific variation. To date, most studies have focused on eutherian mammals, with significantly less known about the evolution of these receptors in marsupials. Here, we describe the identification of 43 immunoglobulin domain-containing LRC genes in the genome of the Tasmanian devil (Sarcophilus harrisii), the largest remaining marsupial carnivore and only the second marsupial species to be studied. We also identify orthologs of NKC genes KLRK1, CD69, CLEC4E, CLEC1B, CLEC1A and an ortholog of an opossum NKC receptor. Characterisation of these regions in a second, distantly related marsupial provides new insights into the dynamic evolutionary histories of these receptors in mammals. Understanding the functional role of these genes is also important for the development of therapeutic agents against Devil Facial Tumour Disease, a contagious cancer that threatens the Tasmanian devil with extinction.
Asunto(s)
Marsupiales/genética , Marsupiales/inmunología , Receptores de Células Asesinas Naturales/genética , Receptores de Células Asesinas Naturales/inmunología , Animales , Secuencia de Bases , Evolución Molecular , Genoma , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/veterinaria , Filogenia , Alineación de SecuenciaRESUMEN
Enhancers are genomic DNA elements controlling spatiotemporal gene expression. Their flexible organization and functional redundancies make deciphering their sequence-function relationships challenging. This article provides an overview of the current understanding of enhancer organization and evolution, with an emphasis on factors that influence these relationships. Technological advancements, particularly in machine learning and synthetic biology, are discussed in light of how they provide new ways to understand this complexity. Exciting opportunities lie ahead as we continue to unravel the intricacies of enhancer function.
Asunto(s)
ADN , Elementos de Facilitación Genéticos , ADN/metabolismo , Aprendizaje AutomáticoRESUMEN
Unlike single-gene mutations leading to Mendelian conditions, common human diseases are likely to be emergent phenomena arising from multilayer, multiscale, and highly interconnected interactions. Atrial and ventricular septal defects are the most common forms of cardiac congenital anomalies in humans. Atrial septal defects (ASD) show an open communication between the left and right atria postnatally, potentially resulting in serious hemodynamic consequences if untreated. A milder form of atrial septal defect, patent foramen ovale (PFO), exists in about one-quarter of the human population, strongly associated with ischaemic stroke and migraine. The anatomic liabilities and genetic and molecular basis of atrial septal defects remain unclear. Here, we advance our previous analysis of atrial septal variation through quantitative trait locus (QTL) mapping of an advanced intercross line (AIL) established between the inbred QSi5 and 129T2/SvEms mouse strains, that show extremes of septal phenotypes. Analysis resolved 37 unique septal QTL with high overlap between QTL for distinct septal traits and PFO as a binary trait. Whole genome sequencing of parental strains and filtering identified predicted functional variants, including in known human congenital heart disease genes. Transcriptome analysis of developing septa revealed downregulation of networks involving ribosome, nucleosome, mitochondrial, and extracellular matrix biosynthesis in the 129T2/SvEms strain, potentially reflecting an essential role for growth and cellular maturation in septal development. Analysis of variant architecture across different gene features, including enhancers and promoters, provided evidence for the involvement of non-coding as well as protein-coding variants. Our study provides the first high-resolution picture of genetic complexity and network liability underlying common congenital heart disease, with relevance to human ASD and PFO.
Asunto(s)
Isquemia Encefálica , Foramen Oval Permeable , Cardiopatías Congénitas , Accidente Cerebrovascular , Humanos , Ratones , Animales , Foramen Oval Permeable/genética , Fenotipo , Perfilación de la Expresión GénicaRESUMEN
BACKGROUND: Despite advancements in globe-preserving treatments, improvements in retinoblastoma outcomes are inconsistent across income levels and geographical locations. We aimed to investigate trends in global retinoblastoma survival and globe preservation during the past 40 years. We also examined associated socioeconomic and health-care factors and global survival disparity. METHODS: We did a systematic review and meta-analysis by screening articles in any language in nine databases (PubMed, Embase, ScienceDirect, Web of Science, OpenGrey, Global Burden of Disease, Global Health Data Exchange, Global Index Medicus, and International Agency for the Prevention of Blindness) published between Jan 1, 1981, and Oct 8, 2021. We screened for articles that described retinoblastoma overall survival or globe salvage, or both. All reported studies were subsequently stratified into four periods: 1980-89, 1990-99, 2000-09, and 2010-20. Indicators on socioeconomic and health-care factors were extracted from the World Bank and WHO. Ophthalmology-related indicators were further parsed from the International Agency for the Prevention of Blindness. Between-study heterogeneities by income level were assessed by mixed-effect meta-analysis. Associations of retinoblastoma outcome with socioeconomic and health-care factors and factors for survival prediction were investigated by multivariable linear regressions. This study is registered with PROSPERO, number CRD42020221556. FINDINGS: Our search identified 14 621 articles, of which 314 studies were included for analysis after screening, including 38 130 patients from 80 regions globally presenting during 1980-2020. 255 articles were entered for time-trend meta-analysis, covering 29 106 patients from 73 countries. Both overall survival (from 79% [95% CI 74-84] to 88% [83-93]; p=0·017) and globe salvage rate (from 22% [14-32] to 44% [36-52]; p=0·0003) improved significantly over the four decades. Wide disparities were observed between higher-income and lower-income countries. Overall survival, globe salvage, and globe salvage for advanced intraocular disease correlated positively with income level. Higher overall survival was associated with lower Gini index (p=0·0001) and with populations that had smaller percentages living in rural areas (p=0·0005). Higher globe salvage was associated with better health-care financing and accessibility (p=0·030). Overall survival (p=0·0024) and globe salvage (p=0·022) were both associated positively with education level. Survival gaps were observed in sub-Saharan Africa and southeast and southwest Asia. INTERPRETATION: Retinoblastoma treatment outcomes have improved globally over the past four decades but large disparities persist between higher-income and lower-income countries, with some areas having major survival gaps. Targeted health-care policy making with increased health-care financing and accessibility are needed in low-income and lower-middle-income countries to improve retinoblastoma outcomes worldwide. FUNDING: Health and Medical Research Fund (Hong Kong) and Children Cancer's Foundation (Hong Kong).