Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 424
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 18(5): 552-562, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28346408

RESUMEN

Gut dysbiosis might underlie the pathogenesis of type 1 diabetes. In mice of the non-obese diabetic (NOD) strain, we found that key features of disease correlated inversely with blood and fecal concentrations of the microbial metabolites acetate and butyrate. We therefore fed NOD mice specialized diets designed to release large amounts of acetate or butyrate after bacterial fermentation in the colon. Each diet provided a high degree of protection from diabetes, even when administered after breakdown of immunotolerance. Feeding mice a combined acetate- and butyrate-yielding diet provided complete protection, which suggested that acetate and butyrate might operate through distinct mechanisms. Acetate markedly decreased the frequency of autoreactive T cells in lymphoid tissues, through effects on B cells and their ability to expand populations of autoreactive T cells. A diet containing butyrate boosted the number and function of regulatory T cells, whereas acetate- and butyrate-yielding diets enhanced gut integrity and decreased serum concentration of diabetogenic cytokines such as IL-21. Medicinal foods or metabolites might represent an effective and natural approach for countering the numerous immunological defects that contribute to T cell-dependent autoimmune diseases.


Asunto(s)
Acetatos/metabolismo , Linfocitos B/inmunología , Butiratos/metabolismo , Colon/metabolismo , Diabetes Mellitus Tipo 1/dietoterapia , Disbiosis/dietoterapia , Linfocitos T Reguladores/inmunología , Animales , Autoinmunidad , Linfocitos B/microbiología , Células Cultivadas , Colon/patología , Dietoterapia , Microbioma Gastrointestinal , Interleucinas/sangre , Ratones , Ratones Endogámicos NOD , Linfocitos T Reguladores/microbiología
3.
N Engl J Med ; 390(11): 994-1008, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38477987

RESUMEN

BACKGROUND: Persistent hemolytic anemia and a lack of oral treatments are challenges for patients with paroxysmal nocturnal hemoglobinuria who have received anti-C5 therapy or have not received complement inhibitors. Iptacopan, a first-in-class oral factor B inhibitor, has been shown to improve hemoglobin levels in these patients. METHODS: In two phase 3 trials, we assessed iptacopan monotherapy over a 24-week period in patients with hemoglobin levels of less than 10 g per deciliter. In the first, anti-C5-treated patients were randomly assigned to switch to iptacopan or to continue anti-C5 therapy. In the second, single-group trial, patients who had not received complement inhibitors and who had lactate dehydrogenase (LDH) levels more than 1.5 times the upper limit of the normal range received iptacopan. The two primary end points in the first trial were an increase in the hemoglobin level of at least 2 g per deciliter from baseline and a hemoglobin level of at least 12 g per deciliter, each without red-cell transfusion; the primary end point for the second trial was an increase in hemoglobin level of at least 2 g per deciliter from baseline without red-cell transfusion. RESULTS: In the first trial, 51 of the 60 patients who received iptacopan had an increase in the hemoglobin level of at least 2 g per deciliter from baseline, and 42 had a hemoglobin level of at least 12 g per deciliter, each without transfusion; none of the 35 anti-C5-treated patients attained the end-point levels. In the second trial, 31 of 33 patients had an increase in the hemoglobin level of at least 2 g per deciliter from baseline without red-cell transfusion. In the first trial, 59 of the 62 patients who received iptacopan and 14 of the 35 anti-C5-treated patients did not require or receive transfusion; in the second trial, no patients required or received transfusion. Treatment with iptacopan increased hemoglobin levels, reduced fatigue, reduced reticulocyte and bilirubin levels, and resulted in mean LDH levels that were less than 1.5 times the upper limit of the normal range. Headache was the most frequent adverse event with iptacopan. CONCLUSIONS: Iptacopan treatment improved hematologic and clinical outcomes in anti-C5-treated patients with persistent anemia - in whom iptacopan showed superiority to anti-C5 therapy - and in patients who had not received complement inhibitors. (Funded by Novartis; APPLY-PNH ClinicalTrials.gov number, NCT04558918; APPOINT-PNH ClinicalTrials.gov number, NCT04820530.).


Asunto(s)
Anemia Hemolítica , Factor B del Complemento , Inactivadores del Complemento , Hemoglobinas , Hemoglobinuria Paroxística , Humanos , Administración Oral , Anemia Hemolítica/complicaciones , Complemento C5/antagonistas & inhibidores , Factor B del Complemento/antagonistas & inhibidores , Inactivadores del Complemento/administración & dosificación , Inactivadores del Complemento/efectos adversos , Inactivadores del Complemento/uso terapéutico , Transfusión de Eritrocitos , Cefalea/inducido químicamente , Hemoglobinas/análisis , Hemoglobinuria Paroxística/tratamiento farmacológico , Hemoglobinuria Paroxística/etiología , Ensayos Clínicos Fase III como Asunto , Ensayos Clínicos Controlados Aleatorios como Asunto
4.
PLoS Pathog ; 19(9): e1011138, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37695784

RESUMEN

Pneumonia is a worldwide threat, making discovery of novel means to combat lower respiratory tract infection an urgent need. Manipulating the lungs' intrinsic host defenses by therapeutic delivery of certain pathogen-associated molecular patterns protects mice against pneumonia in a reactive oxygen species (ROS)-dependent manner. Here we show that antimicrobial ROS are induced from lung epithelial cells by interactions of CpG oligodeoxynucleotides (ODN) with mitochondrial voltage-dependent anion channel 1 (VDAC1). The ODN-VDAC1 interaction alters cellular ATP/ADP/AMP localization, increases delivery of electrons to the electron transport chain (ETC), increases mitochondrial membrane potential (ΔΨm), differentially modulates ETC complex activities and consequently results in leak of electrons from ETC complex III and superoxide formation. The ODN-induced mitochondrial ROS yield protective antibacterial effects. Together, these studies identify a therapeutic metabolic manipulation strategy to broadly protect against pneumonia without reliance on antibiotics.


Asunto(s)
Antiinfecciosos , Neumonía , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo , Pulmón/metabolismo , Neumonía/metabolismo , Antiinfecciosos/farmacología , Potencial de la Membrana Mitocondrial
6.
Nucleic Acids Res ; 50(8): 4500-4514, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35451487

RESUMEN

Histone H3.3 is an H3 variant which differs from the canonical H3.1/2 at four residues, including a serine residue at position 31 which is evolutionarily conserved. The H3.3 S31 residue is phosphorylated (H3.3 S31Ph) at heterochromatin regions including telomeres and pericentric repeats. However, the role of H3.3 S31Ph in these regions remains unknown. In this study, we find that H3.3 S31Ph regulates heterochromatin accessibility at telomeres during replication through regulation of H3K9/K36 histone demethylase KDM4B. In mouse embryonic stem (ES) cells, substitution of S31 with an alanine residue (H3.3 A31 -phosphorylation null mutant) results in increased KDM4B activity that removes H3K9me3 from telomeres. In contrast, substitution with a glutamic acid (H3.3 E31, mimics S31 phosphorylation) inhibits KDM4B, leading to increased H3K9me3 and DNA damage at telomeres. H3.3 E31 expression also increases damage at other heterochromatin regions including the pericentric heterochromatin and Y chromosome-specific satellite DNA repeats. We propose that H3.3 S31Ph regulation of KDM4B is required to control heterochromatin accessibility of repetitive DNA and preserve chromatin integrity.


Asunto(s)
Heterocromatina , Histonas , Animales , Ratones , Histonas/genética , Histonas/metabolismo , Heterocromatina/genética , Histona Demetilasas/metabolismo , Fosforilación , Ensamble y Desensamble de Cromatina
7.
J Formos Med Assoc ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38431481

RESUMEN

BACKGROUND: The incidence of pediatric hospitalizations has significantly increased since the spread of the omicron variant of COVID-19. Changes of characteristics in respiratory and neurological symptoms have been reported. We performed a retrospective, cross-sectional study to characterize the MRI change in children with an emphasis on the change of cerebral vasculatures. METHODS: We retrospectively collected clinical and MRI data of 31 pediatric patients with neurological symptoms during the acute infection and abnormalities on MRI during the outbreak of omicron variant from April 2022 to June 2022 in Taiwan. The clinical manifestations and MRI abnormalities were collected and proportion of patients with vascular abnormalities was calculated. RESULTS: Among 31 pediatric patients with post-COVID-19 neurological symptoms, MRI abnormalities were observed in 15 (48.4%), predominantly encephalitis/encephalopathy (73.3%). Notable MRI findings included focal diffusion-weighted imaging (DWI) hyperintensity in cerebral cortex and thalamus, diffuse cortical T2/DWI hyperintensity, and lesions in the medulla, pons, cerebellum, and splenium of corpus callosum. Vascular abnormalities were seen in 12 (80%) patients with MRI abnormalities, mainly affecting the middle cerebral arteries. The spectrum of neurological manifestations ranged from seizures to Alice in Wonderland syndrome, underscoring the diverse impact of COVID-19 on pediatric patients. CONCLUSION: A high proportion of vascular abnormalities was observed in pediatric patients with neurological involvements, suggesting that vascular involvement is an important mechanism of neurological manifestations in omicron variant infection.

8.
J Formos Med Assoc ; 123(7): 811-817, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38360490

RESUMEN

BACKGROUND: The SARS-CoV-2 virus has been a global public health threat since December 2019. This study aims to investigate the neurological characteristics and risk factors of coronavirus disease 2019 (COVID-19) in Taiwanese children, using data from a collaborative registry. METHODS: A retrospective, cross-sectional, multi-center study was done using an online network of pediatric neurological COVID-19 cohort collaborative registry. RESULTS: A total of 11160 COVID-19-associated emergency department (ED) visits and 1079 hospitalizations were analyzed. Seizures were the most common specific neurological symptom, while encephalitis and acute disseminated encephalomyelitis (ADEM) was the most prevalent severe involvement. In ED patients with neurological manifestations, severe neurological diagnosis was associated with visual hallucination, seizure with/without fever, behavior change, decreased GCS, myoclonic jerk, decreased activity/fatigue, and lethargy. In hospitalized patients with neurological manifestations, severe neurological diagnosis was associated with behavior change, visual hallucination, decreased GCS, seizure with/without fever, myoclonic jerk, fatigue, and hypoglycemia at admission. Encephalitis/ADEM was the only risk factor for poor neurological outcomes at discharge in hospitalized patients. CONCLUSION: Neurological complications are common in pediatric COVID-19. Visual hallucination, seizure, behavior change, myoclonic jerk, decreased GCS, and hypoglycemia at admission are the most important warning signs of severe neurological involvement such as encephalitis/ADEM.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Taiwán/epidemiología , COVID-19/complicaciones , COVID-19/epidemiología , Estudios Transversales , Niño , Masculino , Femenino , Estudios Retrospectivos , Preescolar , Adolescente , Lactante , Factores de Riesgo , Enfermedades del Sistema Nervioso/etiología , Hospitalización/estadística & datos numéricos , Servicio de Urgencia en Hospital/estadística & datos numéricos , Convulsiones/etiología , Convulsiones/epidemiología , Sistema de Registros
9.
Int J Mol Sci ; 24(21)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37958999

RESUMEN

MiR-125b has therapeutic potential in the amelioration of myocardial ischemic injury. MicroRNA isomiRs, with either 5' or 3' addition or deletion of nucleotide(s), have been reported from next-generation sequencing data (NGS). However, due to technical challenges, validation and functional studies of isomiRs are few. In this study, we discovered using NGS, four 3'isomiRs of miR-125b, i.e., addition of A (adenosine), along with deletions of A, AG (guanosine) and AGU (uridine) from rat and sheep heart. These findings were validated using RT-qPCR. Comprehensive functional studies were carried out in the H9C2 hypoxia model. After miR-125b, isomiRs of Plus A, Trim A, AG and AGU mimic transfection, the H9C2 cells were subjected to hypoxic challenge. As assessed using cell viability, apoptosis, CCK-8 and LDH release, miR-125b and isomiRs were all protective against hypoxia. However, Plus A and Trim A were more effective than miR-125b, whilst Trim AG and Trim AGU had far weaker effects than miR-125b. Interestingly, both the gene regulation profile and apoptotic gene validation indicated a major overlap among miR-125b, Plus A and Trim A, whilst Trims AG and AGU revealed a different profile compared to miR-125b. Conclusions: miR-125b and its 3' isomiRs are expressed stably in the heart. miR-125b and isomiRs with addition or deletion of A might function concurrently and concordantly under specific physiological and pathophysiological conditions. In-depth understanding of isomiRs' metabolism and function will contribute to better miRNA therapeutic drug design.


Asunto(s)
MicroARNs , Ratas , Animales , Ovinos/genética , MicroARNs/genética , MicroARNs/metabolismo , Regulación de la Expresión Génica , Apoptosis/genética , Hipoxia/genética
10.
Am J Hum Genet ; 105(6): 1237-1253, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31785787

RESUMEN

We report an early-onset autosomal-recessive neurological disease with cerebellar atrophy and lysosomal dysfunction. We identified bi-allelic loss-of-function (LoF) variants in Oxidative Resistance 1 (OXR1) in five individuals from three families; these individuals presented with a history of severe global developmental delay, current intellectual disability, language delay, cerebellar atrophy, and seizures. While OXR1 is known to play a role in oxidative stress resistance, its molecular functions are not well established. OXR1 contains three conserved domains: LysM, GRAM, and TLDc. The gene encodes at least six transcripts, including some that only consist of the C-terminal TLDc domain. We utilized Drosophila to assess the phenotypes associated with loss of mustard (mtd), the fly homolog of OXR1. Strong LoF mutants exhibit late pupal lethality or pupal eclosion defects. Interestingly, although mtd encodes 26 transcripts, severe LoF and null mutations can be rescued by a single short human OXR1 cDNA that only contains the TLDc domain. Similar rescue is observed with the TLDc domain of NCOA7, another human homolog of mtd. Loss of mtd in neurons leads to massive cell loss, early death, and an accumulation of aberrant lysosomal structures, similar to what we observe in fibroblasts of affected individuals. Our data indicate that mtd and OXR1 are required for proper lysosomal function; this is consistent with observations that NCOA7 is required for lysosomal acidification.


Asunto(s)
Atrofia/patología , Enfermedades Cerebelosas/patología , Lisosomas/patología , Proteínas Mitocondriales/metabolismo , Enfermedades del Sistema Nervioso/patología , Estrés Oxidativo , Adolescente , Adulto , Animales , Atrofia/genética , Atrofia/metabolismo , Enfermedades Cerebelosas/genética , Enfermedades Cerebelosas/metabolismo , Niño , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Lisosomas/metabolismo , Masculino , Proteínas Mitocondriales/genética , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/metabolismo , Linaje , Fenotipo , Adulto Joven
12.
J Formos Med Assoc ; 121(4): 736-748, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34561118

RESUMEN

Neurometabolic diseases are complex group of rare neurogenetic disorders, which are difficult to diagnose. Patients may have toxic metabolite accumulation, inadequate energy supply, or neurotransmitter deficiency, resulting in a variety of clinical manifestations and severity with enzyme activity or transporter function defects. Multiple organ involvement is frequently seen, among which neurological symptoms and signs are one of the most encountered problems. Ocular motor problems deserve special attention for it occurs in some inborn error of metabolism. Furthermore, some are early signs or characteristic findings of certain diseases, such as the gaze palsy in Niemann-Pick disease type C and Gaucher disease or oculogyric crisis in neurotransmitter diseases. Early recognition and intervention are important for better prognosis in treatable neurometabolic disorders. In addition, ways to evaluate and describe eye movement problems also help to demonstrate the severity or clinical progression for those diagnosed with certain neurometabolic diseases. However, the complexity of eye movement and ocular motor control renders our clinical observation, recording and even anatomic localization of abnormal eye movements. Clinicians are more likely to detect early signs and unravel problems by gaining awareness of abnormal eye movement. This study amied to approach neurometabolic diseases in children via eye motor manifestations.


Asunto(s)
Enfermedad de Niemann-Pick Tipo C , Trastornos de la Motilidad Ocular , Niño , Humanos , Enfermedad de Niemann-Pick Tipo C/diagnóstico , Trastornos de la Motilidad Ocular/diagnóstico , Trastornos de la Motilidad Ocular/etiología
13.
J Biol Chem ; 295(47): 15797-15809, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-32994224

RESUMEN

Regulatory elements (REs) consist of enhancers and promoters that occupy a significant portion of the noncoding genome and control gene expression programs either in cis or in trans Putative REs have been identified largely based on their regulatory features (co-occupancy of ESC-specific transcription factors, enhancer histone marks, and DNase hypersensitivity) in mouse embryonic stem cells (mESCs). However, less has been established regarding their regulatory functions in their native context. We deployed cis- and trans-regulatory elements scanning through saturating mutagenesis and sequencing (ctSCAN-SMS) to target elements within the ∼12-kb cis-region (cis-REs; CREs) of the Oct4 gene locus, as well as genome-wide 2,613 high-confidence trans-REs (TREs), in mESCs. ctSCAN-SMS identified 10 CREs and 12 TREs as novel candidate REs of the Oct4 gene in mESCs. Furthermore, deletions of these candidate REs confirmed that the majority of the REs are functionally active, and CREs are more active than TREs in controlling Oct4 gene expression. A subset of active CREs and TREs physically interact with the Oct4 promoter to varying degrees; specifically, a greater number of active CREs, compared with active TREs, physically interact with the Oct4 promoter. Moreover, comparative genomics analysis reveals that a greater number of active CREs than active TREs are evolutionarily conserved between mice and primates, including humans. Taken together, our study demonstrates the reliability and robustness of ctSCAN-SMS screening to identify critical REs and investigate their roles in the regulation of transcriptional output of a target gene (in this case Oct4) in their native context.


Asunto(s)
Sitios Genéticos , Células Madre Embrionarias de Ratones/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Elementos Reguladores de la Transcripción , Animales , Sistemas CRISPR-Cas , Línea Celular , Estudio de Asociación del Genoma Completo , Humanos , Ratones , Células Madre Embrionarias de Ratones/citología , Factor 3 de Transcripción de Unión a Octámeros/genética
14.
Blood ; 133(6): 530-539, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30510080

RESUMEN

Ravulizumab (ALXN1210), a new complement C5 inhibitor, provides immediate, complete, and sustained C5 inhibition. This phase 3, open-label study assessed the noninferiority of ravulizumab to eculizumab in complement inhibitor-naive adults with paroxysmal nocturnal hemoglobinuria (PNH). Patients with lactate dehydrogenase (LDH) ≥1.5 times the upper limit of normal and at least 1 PNH symptom were randomized 1:1 to receive ravulizumab or eculizumab for 183 days (N = 246). Coprimary efficacy end points were proportion of patients remaining transfusion-free and LDH normalization. Secondary end points were percent change from baseline in LDH, change from baseline in Functional Assessment of Chronic Illness Therapy (FACIT)-Fatigue score, proportion of patients with breakthrough hemolysis, stabilized hemoglobin, and change in serum free C5. Ravulizumab was noninferior to eculizumab for both coprimary and all key secondary end points (Pinf < .0001): transfusion avoidance (73.6% vs 66.1%; difference of 6.8% [95% confidence interval (CI), -4.66, 18.14]), LDH normalization (53.6% vs 49.4%; odds ratio, 1.19 [0.80, 1.77]), percent reduction in LDH (-76.8% vs -76.0%; difference [95% CI], -0.83% [-5.21, 3.56]), change in FACIT-Fatigue score (7.07 vs 6.40; difference [95% CI], 0.67 [-1.21, 2.55]), breakthrough hemolysis (4.0% vs 10.7%; difference [95% CI], -6.7% [-14.21, 0.18]), and stabilized hemoglobin (68.0% vs 64.5%; difference [95% CI], 2.9 [-8.80, 14.64]). The safety and tolerability of ravulizumab and eculizumab were similar; no meningococcal infections occurred. In conclusion, ravulizumab given every 8 weeks achieved noninferiority compared with eculizumab given every 2 weeks for all efficacy end points, with a similar safety profile. This trial was registered at www.clinicaltrials.gov as #NCT02946463.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Inactivadores del Complemento/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Hemoglobinuria Paroxística/tratamiento farmacológico , Terapia Recuperativa , Adulto , Femenino , Estudios de Seguimiento , Hemoglobinuria Paroxística/inmunología , Hemoglobinuria Paroxística/patología , Hemólisis/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Pronóstico
15.
Proc Natl Acad Sci U S A ; 115(18): 4737-4742, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29669917

RESUMEN

ATRX (alpha thalassemia/mental retardation X-linked) complexes with DAXX to deposit histone variant H3.3 into repetitive heterochromatin. Recent genome sequencing studies in cancers have revealed mutations in ATRX and their association with ALT (alternative lengthening of telomeres) activation. Here we report depletion of ATRX in mouse ES cells leads to selective loss in ribosomal RNA gene (rDNA) copy number. Supporting this, ATRX-mutated human ALT-positive tumors also show a substantially lower rDNA copy than ALT-negative tumors. Further investigation shows that the rDNA copy loss and repeat instability are caused by a disruption in H3.3 deposition and thus a failure in heterochromatin formation at rDNA repeats in the absence of ATRX. We also find that ATRX-depleted cells are reduced in ribosomal RNA transcription output and show increased sensitivity to RNA polymerase I (Pol I) transcription inhibitor CX5461. In addition, human ALT-positive cancer cell lines are also more sensitive to CX5461 treatment. Our study provides insights into the contribution of ATRX loss of function to tumorigenesis through the loss of rDNA stability and suggests the therapeutic potential of targeting Pol I transcription in ALT cancers.


Asunto(s)
ADN de Neoplasias/metabolismo , ADN Ribosómico/metabolismo , Dosificación de Gen , Mutación , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteína Nuclear Ligada al Cromosoma X/metabolismo , Benzotiazoles/farmacología , Línea Celular Tumoral , ADN de Neoplasias/genética , ADN Ribosómico/genética , Inestabilidad Genómica , Humanos , Naftiridinas/farmacología , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patología , ARN Polimerasa I/antagonistas & inhibidores , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , Transcripción Genética/efectos de los fármacos , Transcripción Genética/genética , Proteína Nuclear Ligada al Cromosoma X/genética
16.
Proc Natl Acad Sci U S A ; 115(51): 13039-13044, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30478036

RESUMEN

Although there has been considerable debate about whether paternal mitochondrial DNA (mtDNA) transmission may coexist with maternal transmission of mtDNA, it is generally believed that mitochondria and mtDNA are exclusively maternally inherited in humans. Here, we identified three unrelated multigeneration families with a high level of mtDNA heteroplasmy (ranging from 24 to 76%) in a total of 17 individuals. Heteroplasmy of mtDNA was independently examined by high-depth whole mtDNA sequencing analysis in our research laboratory and in two Clinical Laboratory Improvement Amendments and College of American Pathologists-accredited laboratories using multiple approaches. A comprehensive exploration of mtDNA segregation in these families shows biparental mtDNA transmission with an autosomal dominantlike inheritance mode. Our results suggest that, although the central dogma of maternal inheritance of mtDNA remains valid, there are some exceptional cases where paternal mtDNA could be passed to the offspring. Elucidating the molecular mechanism for this unusual mode of inheritance will provide new insights into how mtDNA is passed on from parent to offspring and may even lead to the development of new avenues for the therapeutic treatment for pathogenic mtDNA transmission.


Asunto(s)
ADN Mitocondrial/genética , Genes Mitocondriales , Herencia Materna , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Herencia Paterna , Adulto , Preescolar , Bases de Datos Genéticas , Femenino , Genoma Mitocondrial , Humanos , Patrón de Herencia , Masculino , Persona de Mediana Edad , Linaje
17.
Int J Mol Sci ; 22(2)2021 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-33467014

RESUMEN

Chronic tic disorder and Tourette syndrome are common childhood-onset neurological diseases. However, the pathophysiology underlying these disorders is unclear, and most studies have focused on the disinhibition of the corticostriatal-thalamocortical circuit. An autoimmune dysfunction has been proposed in the pathogenetic mechanism of Tourette syndrome and related neuropsychiatric disorders such as obsessive-compulsive disorder, autism, and attention-deficit/hyperactivity disorder. This is based on evidence from animal model studies and clinical findings. Herein, we review and give an update on the clinical characteristics, clinical evidence, and genetic studies in vitro as well as animal studies regarding immune dysfunction in Tourette syndrome.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Trastorno Obsesivo Compulsivo/inmunología , Infecciones Estreptocócicas/inmunología , Síndrome de Tourette/inmunología , Animales , Enfermedades Autoinmunes/epidemiología , Humanos , Linfocitos/inmunología , Microglía/inmunología , Neuronas/inmunología , Trastorno Obsesivo Compulsivo/epidemiología , Infecciones Estreptocócicas/epidemiología , Síndrome de Tourette/epidemiología , Síndrome de Tourette/genética
18.
Hum Mutat ; 41(10): 1783-1796, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32652755

RESUMEN

Interpretation of mitochondrial protein-encoding (mt-mRNA) variants has been challenging due to mitochondrial characteristics that have not been addressed by American College of Medical Genetics and Genomics guidelines. We developed criteria for the interpretation of mt-mRNA variants via literature review of reported variants, tested and refined these criteria by using our new cases, followed by interpreting 421 novel variants in our clinical database using these verified criteria. A total of 32 of 56 previously reported pathogenic (P) variants had convincing evidence for pathogenicity. These variants are either null variants, well-known disease-causing variants, or have robust functional data or strong phenotypic correlation with heteroplasmy levels. Based on our criteria, 65.7% (730/1,111) of variants of unknown significance (VUS) were reclassified as benign (B) or likely benign (LB), and one variant was scored as likely pathogenic (LP). Furthermore, using our criteria we classified 2, 12, and 23 as P, LP, and LB, respectively, among 421 novel variants. The remaining stayed as VUS (91.2%). Appropriate interpretation of mt-mRNA variants is the basis for clinical diagnosis and genetic counseling. Mutation type, heteroplasmy levels in different tissues of the probands and matrilineal relatives, in silico predictions, population data, as well as functional studies are key points for pathogenicity assessments.


Asunto(s)
Predisposición Genética a la Enfermedad , Genómica , Asesoramiento Genético , Humanos , Mutación , ARN Mensajero/genética , Estados Unidos
19.
Genome Res ; 27(6): 913-921, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28341773

RESUMEN

Maintenance of chromatin homeostasis involves proper delivery of histone variants to the genome. The interplay between different chaperones regulating the supply of histone variants to distinct chromatin domains remains largely undeciphered. We report a role of promyelocytic leukemia (PML) protein in the routing of histone variant H3.3 to chromatin and in the organization of megabase-size heterochromatic PML-associated domains that we call PADs. Loss of PML alters the heterochromatic state of PADs by shifting the histone H3 methylation balance from K9me3 to K27me3. Loss of PML impairs deposition of H3.3 by ATRX and DAXX in PADs but preserves the H3.3 loading function of HIRA in these regions. Our results unveil an unappreciated role of PML in the large-scale organization of chromatin and demonstrate a PML-dependent role of ATRX/DAXX in the deposition of H3.3 in PADs. Our data suggest that H3.3 loading by HIRA and ATRX-dependent H3K27 trimethylation constitute mechanisms ensuring maintenance of heterochromatin when the integrity of these domains is compromised.


Asunto(s)
Proteínas Portadoras/genética , Heterocromatina/metabolismo , Histonas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/genética , Nucleosomas/metabolismo , Proteína de la Leucemia Promielocítica/genética , Proteína Nuclear Ligada al Cromosoma X/genética , Animales , Proteínas Portadoras/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Co-Represoras , Fibroblastos/citología , Fibroblastos/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Regulación de la Expresión Génica , Heterocromatina/ultraestructura , Histonas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metilación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Chaperonas Moleculares , Proteínas Nucleares/metabolismo , Nucleosomas/ultraestructura , Proteína de la Leucemia Promielocítica/metabolismo , Transducción de Señal , Proteína Nuclear Ligada al Cromosoma X/metabolismo
20.
Genet Med ; 22(6): 1130, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32269312

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA