Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sensors (Basel) ; 22(3)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35161915

RESUMEN

A fully integrated sensor array assisted by pattern recognition algorithm has been a primary candidate for the assessment of complex vapor mixtures based on their chemical fingerprints. Diverse prototypes of electronic nose systems consisting of a multisensory device and a post processing engine have been developed. However, their precision and validity in recognizing chemical vapors are often limited by the collected database and applied classifiers. Here, we present a novel way of preparing the database and distinguishing chemical vapor mixtures with small data acquisition for chemical vapors and their mixtures of interest. The database for individual vapor analytes is expanded and the one for their mixtures is prepared in the first-order approximation. Recognition of individual target vapors of NO2, HCHO, and NH3 and their mixtures was evaluated by applying the support vector machine (SVM) classifier in different conditions of temperature and humidity. The suggested method demonstrated the recognition accuracy of 95.24%. The suggested method can pave a way to analyze gas mixtures in a variety of industrial and safety applications.


Asunto(s)
Monitoreo del Ambiente , Gases , Nariz Electrónica , Gases/análisis , Humedad , Máquina de Vectores de Soporte
2.
Sensors (Basel) ; 19(15)2019 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-31362386

RESUMEN

The Global Satellite Navigation System (GNSS) used in various location-based services is accurate and stable in outdoor environments. However, it cannot be utilized in an indoor environment because of low signal availability and degradation of accuracy due to the multipath distortion of satellite signals in urban areas. On the contrary, LTE signals are available almost everywhere in urban areas and are quite stable without much variation throughout the year. This is because of the fixed location of base stations and the well-maintained policy of mobile communication service providers. Its varied stability and reliability make LTE signals a more viable method for localization. However, there are some complexities in utilizing LTE signals including signal interference distortion phenomena during propagation multipath fading, and various types of noise. In this paper, we propose a surface correlation-based fingerprinting method to utilize LTE signals for localization in urban areas. The surface correlation converts timely measured signal strength into spatial pattern using the walking distance from a Pedestrian Dead-Reckoning (PDR). The surface correlation is carried out by comparing the spatial signal strength pattern of a pedestrian`s movement trajectory with a fingerprinting database to estimate the location. A reference trajectory of the moving pedestrian is chosen to have a greater correlation among the multiple trajectory candidates generated from a link-based fingerprinting database. By comparing spatial signal strength patterns, the proposed method can improve robustness in localization overcoming the accuracy degradation problem due to RF multipath and noise that are dominant in the conventional RSS measurement-based LTE localization scheme. The test results in urban areas demonstrate that the proposed surface correlation-based fingerprinting method has improved performance compared to the other conventional methods, thus proving to be a useful complementary method to the GNSS in urban areas.

3.
Angew Chem Int Ed Engl ; 57(31): 9716-9721, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-29933516

RESUMEN

The current gold-standard diagnosis method for avian influenza (AI) is an embryonic egg-based hemagglutination assay followed by immunoblotting or PCR sequencing to confirm subtypes. It requires, however, specialized facilities to handle egg inoculation and incubation, and the subtyping methods relied on costly reagents. Now, the first differential sensing approach to distinguish AI subtypes is demonstrated using series of cell lines and a fluorescent sensor. Susceptibility of AI virus differs depending on genetic backgrounds of host cells. Cells were examined from different organ origins, and the infection patterns against a panel of cells were utilized for AI virus subtyping. To quantify AI infection, a highly cell-permeable fluorescent superoxide sensor was designed to visualize infection. This differential sensing strategy successfully proved discriminations of AI subtypes and demonstrated as a useful primary screening platform to monitor a large number of samples.


Asunto(s)
Colorantes Fluorescentes/química , Virus de la Influenza A/genética , Células de Riñón Canino Madin Darby/virología , Infecciones por Orthomyxoviridae/diagnóstico por imagen , Ácidos Sulfónicos/química , Superóxidos/análisis , Animales , Células CHO , Línea Celular , Cricetulus , Perros , Humanos , Infecciones por Orthomyxoviridae/genética , Superóxidos/metabolismo
4.
Opt Express ; 23(10): 13537-44, 2015 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-26074601

RESUMEN

We experimentally demonstrated supercontinuum generation through a hollow core photonic bandgap fiber (HC-PBGF) filled with DNA nanocrystals modified by copper ions in a solution. Both double-crossover nano DNA structure and copper-ion-modified structure provided a sufficiently high optical nonlinearity within a short length of hollow optical fiber. Adding a higher concentration of copper ion into the DNA nanocrystals, the bandwidth of supercontinuum output was monotonically increased. Finally, we achieved the bandwidth expansion of about 1000 nm to be sufficient for broadband multi-spectrum applications.

5.
Analyst ; 140(23): 7997-8006, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26524182

RESUMEN

The ability of antimicrobial peptides (AMPs) for effective binding to multiple target microbes has drawn lots of attention as an alternative to antibodies for detecting whole bacteria. We investigated pathogenic Escherichia coli (E. coli) detection by applying a microfluidic based biosensing device embedded with AMP-labeled beads. According to a new channel design, our device is reusable by the repeated operation of detection and regeneration modes, and the binding rate is more enhanced due to even distribution of the bacterial suspension inside the chamber by implementing influx side channels. We observed higher binding affinity of pathogenic E. coli O157:H7 for AMP-labeled beads than nonpathogenic E. coli DH5α, and the fluorescence intensity of pathogenic E. coli was about 3.4 times higher than the nonpathogenic one. The flow rate of bacterial suspension should be applied above a certain level for stronger binding and rapid detection by attaining a saturation level of detection within a short time of less than 20 min. A possible improvement in the limit of detection in the level of 10 cells per mL for E. coli O157:H7 implies that the AMP-labeled beads have high potential for the sensitive detection of pathogenic E. coli at an appropriate flow rate.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Técnicas Bacteriológicas/métodos , Escherichia coli O157/aislamiento & purificación , Dispositivos Laboratorio en un Chip , Péptidos Catiónicos Antimicrobianos/química , Límite de Detección , Microesferas
6.
Sensors (Basel) ; 13(6): 7827-37, 2013 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-23783735

RESUMEN

We have constructed a wireless monitoring test platform with a sub-nA resolution signal amplification/processing circuit (SAPC) and a wireless communication network to test the real-time remote monitoring of the signals from carbon nanotube (CNT) sensors. The operation characteristics of the CNT sensors can also be measured by the ISD-VSD curve with the SAPC. The SAPC signals are transmitted to a personal computer by Bluetooth communication and the signals from the computer are transmitted to smart phones by Wi-Fi communication, in such a way that the signals from the sensors can be remotely monitored through a web browser. Successful remote monitoring of signals from a CNT sensor was achieved with the wireless monitoring test platform for detection of 0.15% methanol vapor with 0.5 nA resolution and 7 Hz sampling rate.

7.
Biosens Bioelectron ; 152: 112010, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941618

RESUMEN

Conventional electrochemical biosensing systems rely on a single output signal, which limits their certain practical application, specifically from the viewpoint of external interference factors causing electrochemical signal errors. This study reports a self-calibrating dual-electrode based electrochemical aptasensor for the reliable and independent detection of avian influenza viruses (AIVs), which are the primary cause of highly contagious respiratory diseases, under external interference factors. Both electrodes were fabricated using tungsten rods surface-modified with a 3D nanostructured porous silica film (3DNRE). Subsequently, methylene blue (MB) was loaded as a redox-active material into the pores and capped with corresponding aptamer. One electrode was capped with an anti-AIV nucleoprotein (NP) aptamer (AptAIV-MB@3DNRE) allowing target-specific binding, resulting in changes in electrochemical signal upon diffusional release of the loaded redox molecules. The other electrode was capped with a control aptamer (Aptcon-MB@3DNRE), serving as a reference to correct false responses generated by nonspecific aptamer detachment and MB release under environmental changes in pH and ion strength and presence of nontarget molecules from cell lysis debris. In the dual-electrode platform, Aptcon-MB@3DNRE provides a corrected baseline for the fluctuating original output signals from AptAIV-MB@3DNRE. Consequently, this dual-electrode platform exhibits excellent output-signal stability (relative standard deviation, RSD: 5.86%) compared to a conventional single-electrode platform (RSD: 30.13%) at equivalent concentrations of AIV NP samples under different reaction buffer conditions. Moreover, no further purification and washing steps were required, indicating that the strategy may represent a universal and reliable platform for the electrochemical aptamer-based detection of various biomolecules.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles/instrumentación , Aves/virología , Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , Animales , Calibración , Técnicas Electroquímicas/instrumentación , Electrodos , Diseño de Equipo , Gripe Aviar/diagnóstico
8.
Adv Mater ; 30(27): e1706764, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29775503

RESUMEN

Photosensitive materials contain biologically engineered elements and are constructed using delicate techniques, with special attention devoted to efficiency, stability, and biocompatibility. However, to date, no photosensitive material has been developed to replace damaged visual-systems to detect light and transmit the signal to a neuron in the human body. In the current study, artificial nanovesicle-based photosensitive materials are observed to possess the characteristics of photoreceptors similar to the human eye. The materials exhibit considerably effective spectral characteristics according to each pigment. Four photoreceptors originating from the human eye with color-distinguishability are produced in human embryonic kidney (HEK)-293 cells and partially purified in the form of nanovesicles. Under various wavelengths of visible light, electrochemical measurements are performed to analyze the physiological behavior and kinetics of the photoreceptors, with graphene, performing as an electrode, playing an important role in the lipid bilayer deposition and oxygen reduction processes. Four nanovesicles with different photoreceptors, namely, rhodopsin (Rho), short-, medium-, and longwave sensitive opsin 1 (1SW, 1MW, 1LW), show remarkable color-dependent characteristics, consistent with those of natural human retina. With four different light-emitting diodes for functional verification, the photoreceptors embedded in nanovesicles show remarkably specific color sensitivity. This study demonstrates the potential applications of light-activated platforms in biological optoelectronic industries.

9.
Sci Rep ; 7(1): 8146, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28811551

RESUMEN

As a candidate for a rapid detection of biomaterials, terahertz (THz) spectroscopy system can be considered with some advantage in non-destructive, label-free, and non-contact manner. Because protein-ligand binding energy is in the THz range, especially, most important conformational information in molecular interactions can be captured by THz electromagnetic wave. Based on the THz time-domain spectroscopy system, THz nano-metamaterial sensing chips were prepared for great enhancing of detection sensitivity. A metamaterial sensing chip was designed for increasing of absorption cross section of the target sample, related to the transmitted THz near field enhancement via the composition of metamaterial. The measured THz optical properties were then analyzed in terms of refractive index and absorption coefficient, and compared with simulation results. Also, virus quantification regarding various concentrations of the viruses was performed, showing a clear linearity. The proposed sensitive and selective THz detection method can provide abundant information of detected biomaterials to help deep understanding of fundamental optical characteristics of them, suggesting rapid diagnosis way especially useful for such dangerous and time-sensitive target biomaterials.

10.
Opt Express ; 14(24): 11833-8, 2006 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-19529606

RESUMEN

Latching optical switches and optical logic gates with AND and OR functionality are demonstrated for the first time by the monolithic integration of a vertical cavity lasers with depleted optical thyristor structure. The thyristors have a low threshold current of 0.65 mA and a high on/off contrast ratio of more than 50 dB. By simply changing a reference switching voltage, this single device operates as two logic functions, optical logic AND and OR. The thyristor laser fabricated by using the oxidation process and has achieved high optical output power efficiency and a high sensitivity to the optical input light.

11.
Opt Lett ; 31(18): 2678-80, 2006 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16936855

RESUMEN

For the first time to our knowledge, pulse-amplitude equalization of rational-harmonically mode-locked fiber ring laser pulses has been experimentally demonstrated using a polarization-maintaining laser resonator without any additional device. The pulse-amplitude distribution of the laser pulses was controlled by the modulator driving power, and stable pulse-amplitude-equalized pulses with repetition rates of 20, 30, and 40 GHz have been obtained in the linear region of the modulator.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA