Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 32(15): 2411-2421, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37154571

RESUMEN

We assessed the relationship of gene copy number variation (CNV) in mental health/neurodevelopmental traits and diagnoses, physical health and cognition in a community sample of 7100 unrelated children and youth of European or East Asian ancestry (Spit for Science). Clinically significant or susceptibility CNVs were present in 3.9% of participants and were associated with elevated scores on a continuous measure of attention-deficit/hyperactivity disorder (ADHD) traits (P = 5.0 × 10-3), longer response inhibition (a cognitive deficit found in several mental health and neurodevelopmental disorders; P = 1.0 × 10-2) and increased prevalence of mental health diagnoses (P = 1.9 × 10-6, odds ratio: 3.09), specifically ADHD, autism spectrum disorder anxiety and learning problems/learning disorder (P's < 0.01). There was an increased burden of rare deletions in gene-sets related to brain function or expression in brain associated with more ADHD traits. With the current mental health crisis, our data established a baseline for delineating genetic contributors in pediatric-onset conditions.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Adolescente , Humanos , Niño , Salud Mental , Variaciones en el Número de Copia de ADN/genética , Trastorno del Espectro Autista/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Trastorno por Déficit de Atención con Hiperactividad/epidemiología , Trastorno por Déficit de Atención con Hiperactividad/genética , Dosificación de Gen
2.
J Med Genet ; 60(12): 1153-1160, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37290907

RESUMEN

BACKGROUND: We present genomic and phenotypic findings of a transgenerational family consisting of three male offspring, each with a maternally inherited distal 220 kb deletion at locus 16p11.2 (BP2-BP3). Genomic analysis of all family members was prompted by a diagnosis of autism spectrum disorder (ASD) in the eldest child, who also presented with a low body mass index. METHODS: All male offspring underwent extensive neuropsychiatric evaluation. Both parents were also assessed for social functioning and cognition. The family underwent whole-genome sequencing. Further data curation was undertaken from samples ascertained for neurodevelopmental disorders and congenital abnormalities. RESULTS: On medical examination, both the second and third-born male offspring presented with obesity. The second-born male offspring met research diagnostic criteria for ASD at 8 years of age and presented with mild attention deficits. The third-born male offspring was only noted as having motor deficits and received a diagnosis of developmental coordination disorder. Other than the 16p11.2 distal deletion, no additional contributing variants of clinical significance were observed. The mother was clinically evaluated and noted as having a broader autism phenotype. CONCLUSION: In this family, the phenotypes observed are most likely caused by the 16p11.2 distal deletion. The lack of other overt pathogenic mutations identified by genomic sequencing reinforces the variable expressivity that should be heeded in a clinical setting. Importantly, distal 16p11.2 deletions can present with a highly variable phenotype even within a single family. Our additional data curation provides further evidence on the variable clinical presentation among those with pathogenetic 16p11.2 (BP2-BP3) mutations.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Discapacidad Intelectual , Niño , Humanos , Masculino , Deleción Cromosómica , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Familia , Fenotipo , Variación Biológica Poblacional , Cromosomas Humanos Par 16/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética
3.
Cereb Cortex ; 32(13): 2885-2894, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34791112

RESUMEN

Rett syndrome (RTT) is characterized by dysfunction in neuronal excitation/inhibition (E/I) balance, potentially impacting seizure susceptibility via deficits in K+/Cl- cotransporter 2 (KCC2) function. Mice lacking the Methyl-CpG binding protein 2 (MeCP2) recapitulate many symptoms of RTT, and recombinant human insulin-like growth factor-1 (rhIGF-1) restores KCC2 expression and E/I balance in MeCP2 KO mice. However, clinical trial outcomes of rhIGF-1 in RTT have been variable, and increasing its therapeutic efficacy is highly desirable. To this end, the neuropeptide oxytocin (OXT) is promising, as it also critically modulates KCC2 function during early postnatal development. We measured basal KCC2 expression levels in MeCP2 KO mice and identified 3 key frontal brain regions showing KCC2 alterations in young adult mice, but not in postnatal P10 animals. We hypothesized that deficits in an IGF-1/OXT signaling crosstalk modulating KCC2 may occur in RTT during postnatal development. Consistently, we detected alterations of IGF-1 receptor and OXT receptor levels in those brain areas. rhIGF-1 and OXT treatments in KO mice rescued KCC2 expression in a region-specific and complementary manner. These results suggest that region-selective combinatorial pharmacotherapeutic strategies could be most effective at normalizing E/I balance in key brain regions subtending the RTT pathophysiology.


Asunto(s)
Síndrome de Rett , Simportadores , Animales , Modelos Animales de Enfermedad , Factor I del Crecimiento Similar a la Insulina/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Oxitocina/metabolismo , Síndrome de Rett/tratamiento farmacológico , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Simportadores/genética , Simportadores/metabolismo
4.
Neurogenetics ; 23(2): 137-149, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35325322

RESUMEN

Copy number variations (CNVs) are highly implicated in the etiology of neurodevelopmental disorders (NDDs), and chromosomal microarray analysis (CMA) has been recommended as a first-tier test for many NDDs. We undertook a study to identify clinically relevant CNVs and genes in an ethnically homogenous population of the United Arab Emirates. We genotyped 98 patients with NDDs using genome-wide chromosomal microarray analysis, and observed 47.1% deletion and 52.9% duplication CNVs, of which 11.8% are pathogenic, 23.5% are likely pathogenic, and 64.7% VOUS. The average size of copy number losses (3.9 Mb) was generally higher than of gains (738.4 kb). Analysis of VOUS CNVs for constrained genes (enrichment for brain critical exons and high pLI genes) yielded 7 unique genes. Among these 7 constrained genes, we propose FNTA and PXK as potential candidate genes for neurodevelopmental disorders, which warrants further investigation. Thirty-two overlapping CNVs (Decipher and ClinVar) containing the FNTA gene were previously identified in NDD patients and 6 overlapping CNVs (Decipher and ClinVar) containing the PXK gene were previously identified in NDD patients. Our study supports the utility of CMA for CNV profiling which aids in precise genetic diagnosis and its integration into therapeutics and management of NDD patients.


Asunto(s)
Variaciones en el Número de Copia de ADN , Trastornos del Neurodesarrollo , Estudios de Cohortes , Variaciones en el Número de Copia de ADN/genética , Humanos , Análisis por Micromatrices , Trastornos del Neurodesarrollo/genética , Emiratos Árabes Unidos
5.
Hum Genomics ; 15(1): 68, 2021 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-34802461

RESUMEN

BACKGROUND: In recent years, several hundred autism spectrum disorder (ASD) implicated genes have been discovered impacting a wide range of molecular pathways. However, the molecular underpinning of ASD, particularly from the point of view of 'brain to behaviour' pathogenic mechanisms, remains largely unknown. METHODS: We undertook a study to investigate patterns of spatiotemporal and cell type expression of ASD-implicated genes by integrating large-scale brain single-cell transcriptomes (> million cells) and de novo loss-of-function (LOF) ASD variants (impacting 852 genes from 40,122 cases). RESULTS: We identified multiple single-cell clusters from three distinct developmental human brain regions (anterior cingulate cortex, middle temporal gyrus and primary visual cortex) that evidenced high evolutionary constraint through enrichment for brain critical exons and high pLI genes. These clusters also showed significant enrichment with ASD loss-of-function variant genes (p < 5.23 × 10-11) that are transcriptionally highly active in prenatal brain regions (visual cortex and dorsolateral prefrontal cortex). Mapping ASD de novo LOF variant genes into large-scale human and mouse brain single-cell transcriptome analysis demonstrate enrichment of such genes into neuronal subtypes and are also enriched for subtype of non-neuronal glial cell types (astrocyte, p < 6.40 × 10-11, oligodendrocyte, p < 1.31 × 10-09). CONCLUSION: Among the ASD genes enriched with pathogenic de novo LOF variants (i.e. KANK1, PLXNB1), a subgroup has restricted transcriptional regulation in non-neuronal cell types that are evolutionarily conserved. This association strongly suggests the involvement of subtype of non-neuronal glial cells in the pathogenesis of ASD and the need to explore other biological pathways for this disorder.


Asunto(s)
Trastorno del Espectro Autista , Animales , Trastorno del Espectro Autista/genética , Exones , Regulación de la Expresión Génica , Ratones , Proteínas del Tejido Nervioso/genética , Neuroglía/patología , Receptores de Superficie Celular/genética , Transcriptoma/genética
6.
Am J Hum Genet ; 102(2): 278-295, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29395074

RESUMEN

Copy-number variations (CNVs) are strong risk factors for neurodevelopmental and psychiatric disorders. The 15q13.3 microdeletion syndrome region contains up to ten genes and is associated with numerous conditions, including autism spectrum disorder (ASD), epilepsy, schizophrenia, and intellectual disability; however, the mechanisms underlying the pathogenesis of 15q13.3 microdeletion syndrome remain unknown. We combined whole-genome sequencing, human brain gene expression (proteome and transcriptome), and a mouse model with a syntenic heterozygous deletion (Df(h15q13)/+ mice) and determined that the microdeletion results in abnormal development of cortical dendritic spines and dendrite outgrowth. Analysis of large-scale genomic, transcriptomic, and proteomic data identified OTUD7A as a critical gene for brain function. OTUD7A was found to localize to dendritic and spine compartments in cortical neurons, and its reduced levels in Df(h15q13)/+ cortical neurons contributed to the dendritic spine and dendrite outgrowth deficits. Our results reveal OTUD7A as a major regulatory gene for 15q13.3 microdeletion syndrome phenotypes that contribute to the disease mechanism through abnormal cortical neuron morphological development.


Asunto(s)
Trastornos de los Cromosomas/enzimología , Trastornos de los Cromosomas/genética , Enzimas Desubicuitinizantes/fisiología , Endopeptidasas/genética , Discapacidad Intelectual/enzimología , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/enzimología , Trastornos del Neurodesarrollo/genética , Convulsiones/enzimología , Convulsiones/genética , Animales , Trastorno del Espectro Autista/genética , Deleción Cromosómica , Cromosomas Humanos Par 15/enzimología , Cromosomas Humanos Par 15/genética , Espinas Dendríticas/metabolismo , Enzimas Desubicuitinizantes/genética , Endopeptidasas/metabolismo , Femenino , Eliminación de Gen , Estudios de Asociación Genética , Humanos , Masculino , Ratones , Fenotipo , Prosencéfalo/patología
7.
Dev Psychopathol ; 33(2): 625-633, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33719986

RESUMEN

This paper, written in honor of Professor Ed Zigler, focuses on some of the themes in developmental disabilities research that were so central to his work. It has now been nearly 80 years since Leo Kanner first identified the prototypic form - early infantile autism - of what is now autism spectrum disorder. In this article we summarize the development of the concept and the important accumulation of knowledge over time that has now led us to the recognition of a broader autism phenotype just as, at the same time, the current official diagnostic system in the USA has narrowed the concept. We also address current controversies regarding autism as the diagnosis is impacted by age and developmental factors, gender, and cultural issues. In parallel to the work on intellectual deficiency and development pioneered by Zigler and his colleagues, we summarize some of the challenges for the years ahead.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Manual Diagnóstico y Estadístico de los Trastornos Mentales , Humanos , Fenotipo , Reconocimiento en Psicología
8.
Am J Med Genet B Neuropsychiatr Genet ; 183(5): 268-276, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32372567

RESUMEN

Autism spectrum disorder (ASD) is a relatively common childhood onset neurodevelopmental disorder with a complex genetic etiology. While progress has been made in identifying the de novo mutational landscape of ASD, the genetic factors that underpin the ASD's tendency to run in families are not well understood. In this study, nine extended pedigrees each with three or more individuals with ASD, and others with a lesser autism phenotype, were phenotyped and genotyped in an attempt to identify heritable copy number variants (CNVs). Although these families have previously generated linkage signals, no rare CNV segregated with these signals in any family. A small number of clinically relevant CNVs were identified. Only one CNV was identified that segregated with ASD phenotype; namely, a duplication overlapping DLGAP2 in three male offspring each with an ASD diagnosis. This gene encodes a synaptic scaffolding protein, part of a group of proteins known to be pathologically implicated in ASD. On the whole, however, the heritable nature of ASD in the families studied remains poorly understood.


Asunto(s)
Trastorno del Espectro Autista/genética , Variaciones en el Número de Copia de ADN , Análisis Mutacional de ADN , Dosificación de Gen , Linaje , Trastorno Autístico/genética , Niño , Preescolar , Femenino , Ligamiento Genético , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Lactante , Masculino , Mutación , Proteínas del Tejido Nervioso/genética , Fenotipo , Factores de Riesgo , Sinapsis/metabolismo , Secuenciación Completa del Genoma
9.
BMC Med Genet ; 20(1): 150, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31477031

RESUMEN

BACKGROUND: Genetic testing is becoming an essential tool for breast cancer (BC) diagnosis and treatment pathway, and particularly important for early detection and cancer prevention. The purpose of this study was to explore the diagnostic yield of targeted sequencing of the high priority BC genes. METHODS: We have utilized a cost-effective targeted sequencing approach of high priority actionable BC genes (BRCA1, BRCA2, ERBB2 and TP53) in a homogeneous patient cohort from Bangladesh (n = 52) by using tumor and blood samples. RESULTS: Blood derived targeted sequencing revealed 25.58% (11/43) clinically relevant mutations (both pathogenic and variants of uncertain significance (VUS)), with 13.95% (6/43) of samples carrying a pathogenic mutations. We have identified and validated five novel pathogenic germline mutations in this cohort, comprising of two frameshift deletions in BRCA2, and missense mutations in BRCA1, BRCA2 and ERBB2 gene respectively. Furthermore, we have identified three pathogenic mutations and a VUS within three tumor samples, including a sample carrying pathogenic mutations impacting both TP53 (c.322dupG; a novel frameshift insertion) and BRCA1 genes (c.116G > A). 22% of tissue samples had a clinically relevant TP53 mutation. Although the cohort is small, we have found pathogenic mutations to be enriched in BRCA2 (9.30%, 4/43) compare to BRCA1 (4.65%, 2/43). The frequency of germline VUS mutations found to be similar in both BRCA1 (4.65%; 2/43) and BRCA2 (4.65%; 2/43) compared to ERBB2 (2.32%; 1/43). CONCLUSIONS: This is the first genetic study of BC predisposition genes in this population, implies that genetic screening through targeted sequencing can detect clinically significant and actionable BC-relevant mutations.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/genética , Predisposición Genética a la Enfermedad/genética , Mutación , Receptor ErbB-2/genética , Proteína p53 Supresora de Tumor/genética , Adulto , Anciano , Bangladesh/etnología , Secuencia de Bases , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/epidemiología , Estudios de Cohortes , Femenino , Mutación del Sistema de Lectura , Pruebas Genéticas , Variación Genética , Mutación de Línea Germinal , Humanos , Persona de Mediana Edad , Mutación Missense , Análisis de Secuencia de ADN
10.
Dev Med Child Neurol ; 60(5): 445-451, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29574884

RESUMEN

A genetic basis for autism spectrum disorder (ASD) is now well established, and with the availability of high-throughput microarray and sequencing platforms, major advances have been made in our understanding of genetic risk factors. Rare, often de novo, copy number and single nucleotide variants are both implicated, with many ASD-implicated genes showing pleiotropy and variable penetrance. Additionally, common variants are also known to play a role in ASD's genetic etiology. These new insights into the architecture of ASD's genetic etiology offer opportunities for the identification of molecular targets for novel interventions, and provide new insight for families seeking genetic counselling. WHAT THE PAPER ADDS: A number of rare genetic variants are implicated in autism spectrum disorder (ASD), with some showing recurrence. Common genetic variants are also important and a number of loci are now being uncovered. Genetic testing for individuals with ASD offers the opportunity to identify relevant genetic etiology.


Asunto(s)
Trastorno del Espectro Autista/genética , Predisposición Genética a la Enfermedad/genética , Trastorno del Espectro Autista/diagnóstico , Humanos , Péptidos
11.
Hum Mol Genet ; 23(10): 2752-68, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24381304

RESUMEN

Rare copy number variants (CNVs) disrupting ASTN2 or both ASTN2 and TRIM32 have been reported at 9q33.1 by genome-wide studies in a few individuals with neurodevelopmental disorders (NDDs). The vertebrate-specific astrotactins, ASTN2 and its paralog ASTN1, have key roles in glial-guided neuronal migration during brain development. To determine the prevalence of astrotactin mutations and delineate their associated phenotypic spectrum, we screened ASTN2/TRIM32 and ASTN1 (1q25.2) for exonic CNVs in clinical microarray data from 89 985 individuals across 10 sites, including 64 114 NDD subjects. In this clinical dataset, we identified 46 deletions and 12 duplications affecting ASTN2. Deletions of ASTN1 were much rarer. Deletions near the 3' terminus of ASTN2, which would disrupt all transcript isoforms (a subset of these deletions also included TRIM32), were significantly enriched in the NDD subjects (P = 0.002) compared with 44 085 population-based controls. Frequent phenotypes observed in individuals with such deletions include autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), speech delay, anxiety and obsessive compulsive disorder (OCD). The 3'-terminal ASTN2 deletions were significantly enriched compared with controls in males with NDDs, but not in females. Upon quantifying ASTN2 human brain RNA, we observed shorter isoforms expressed from an alternative transcription start site of recent evolutionary origin near the 3' end. Spatiotemporal expression profiling in the human brain revealed consistently high ASTN1 expression while ASTN2 expression peaked in the early embryonic neocortex and postnatal cerebellar cortex. Our findings shed new light on the role of the astrotactins in psychopathology and their interplay in human neurodevelopment.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/genética , Trastornos Generalizados del Desarrollo Infantil/genética , Glicoproteínas/genética , Proteínas del Tejido Nervioso/genética , Factores de Transcripción/genética , Adolescente , Adulto , Estudios de Casos y Controles , Niño , Preescolar , Cromosomas Humanos Par 9 , Variaciones en el Número de Copia de ADN , Exones , Femenino , Expresión Génica , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Glicoproteínas/metabolismo , Humanos , Lactante , Recién Nacido , Masculino , Proteínas del Tejido Nervioso/metabolismo , Especificidad de Órganos , Fenotipo , Polimorfismo de Nucleótido Simple , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Factores de Riesgo , Eliminación de Secuencia , Factores de Transcripción/metabolismo , Sitio de Iniciación de la Transcripción , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Adulto Joven
12.
Hum Genet ; 134(2): 191-201, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25432440

RESUMEN

Copy number variation has emerged as an important cause of phenotypic variation, particularly in relation to some complex disorders. Autism spectrum disorder (ASD) is one such disorder, in which evidence is emerging for an etiological role for some rare penetrant de novo and rare inherited copy number variants (CNVs). De novo variation, however, does not always explain the familial nature of ASD, leaving a gap in our knowledge concerning the heritable genetic causes of this disorder. Extended pedigrees, in which several members have ASD, provide an opportunity to investigate inherited genetic risk factors. In this current study, we recruited 19 extended ASD pedigrees, and, using the Illumina HumanOmni2.5 BeadChip, conducted genome-wide CNV interrogation. We found no definitive evidence of an etiological role for segregating CNVs in these pedigrees, and no evidence that linkage signals in these pedigrees are explained by segregating CNVs. However, a small number of putative de novo variants were transmitted from BAP parents to their ASD offspring, and evidence emerged for a rare duplication CNV at 11p13.3 harboring two putative 'developmental/neuropsychiatric' susceptibility gene(s), GSTP1 and NDUFV1.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/genética , Cromosomas Humanos Par 11/genética , Duplicación de Gen , Predisposición Genética a la Enfermedad , Gutatión-S-Transferasa pi/genética , NADH Deshidrogenasa/genética , Linaje , Bases de Datos de Ácidos Nucleicos , Conjuntos de Datos como Asunto , Complejo I de Transporte de Electrón , Femenino , Ligamiento Genético , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Penetrancia
13.
JAMA ; 314(9): 895-903, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26325558

RESUMEN

IMPORTANCE: The use of genome-wide tests to provide molecular diagnosis for individuals with autism spectrum disorder (ASD) requires more study. OBJECTIVE: To perform chromosomal microarray analysis (CMA) and whole-exome sequencing (WES) in a heterogeneous group of children with ASD to determine the molecular diagnostic yield of these tests in a sample typical of a developmental pediatric clinic. DESIGN, SETTING, AND PARTICIPANTS: The sample consisted of 258 consecutively ascertained unrelated children with ASD who underwent detailed assessments to define morphology scores based on the presence of major congenital abnormalities and minor physical anomalies. The children were recruited between 2008 and 2013 in Newfoundland and Labrador, Canada. The probands were stratified into 3 groups of increasing morphological severity: essential, equivocal, and complex (scores of 0-3, 4-5, and ≥6). EXPOSURES: All probands underwent CMA, with WES performed for 95 proband-parent trios. MAIN OUTCOMES AND MEASURES: The overall molecular diagnostic yield for CMA and WES in a population-based ASD sample stratified in 3 phenotypic groups. RESULTS: Of 258 probands, 24 (9.3%, 95%CI, 6.1%-13.5%) received a molecular diagnosis from CMA and 8 of 95 (8.4%, 95%CI, 3.7%-15.9%) from WES. The yields were statistically different between the morphological groups. Among the children who underwent both CMA and WES testing, the estimated proportion with an identifiable genetic etiology was 15.8% (95%CI, 9.1%-24.7%; 15/95 children). This included 2 children who received molecular diagnoses from both tests. The combined yield was significantly higher in the complex group when compared with the essential group (pairwise comparison, P = .002). [table: see text]. CONCLUSIONS AND RELEVANCE: Among a heterogeneous sample of children with ASD, the molecular diagnostic yields of CMA and WES were comparable, and the combined molecular diagnostic yield was higher in children with more complex morphological phenotypes in comparison with the children in the essential category. If replicated in additional populations, these findings may inform appropriate selection of molecular diagnostic testing for children affected by ASD.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/genética , Exoma , Análisis por Micromatrices/métodos , Técnicas de Diagnóstico Molecular/métodos , Síndrome de Asperger/diagnóstico , Síndrome de Asperger/genética , Trastorno Autístico/diagnóstico , Trastorno Autístico/genética , Niño , Trastornos Generalizados del Desarrollo Infantil/diagnóstico , Trastornos Generalizados del Desarrollo Infantil/patología , Preescolar , Femenino , Humanos , Masculino , Análisis por Micromatrices/estadística & datos numéricos , Técnicas de Diagnóstico Molecular/estadística & datos numéricos , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos/estadística & datos numéricos , Fenotipo , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de Proteína/métodos
14.
J Psychopharmacol ; 38(4): 318-323, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38494873

RESUMEN

As Faculty of the British Association for Psychopharmacology course on child and adolescent psychopharmacology, we present here what we deem are the most common pitfalls, and how to avoid them, in child and adolescent psychopharmacology. In this paper, we specifically addressed common pitfalls in the pharmacological treatment of autism and intellectual disability, eating disorders, neuropsychiatric correlates of epilepsy, and psychosis. Pitfalls in relation to the treatment of other disorders are addressed in a separate paper (Part I).


Asunto(s)
Trastorno Autístico , Trastornos de Alimentación y de la Ingestión de Alimentos , Discapacidad Intelectual , Psicofarmacología , Trastornos Psicóticos , Niño , Adolescente , Humanos
15.
J Psychopharmacol ; 38(4): 311-317, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38494948

RESUMEN

As Faculty of the British Association for Psychopharmacology course on child and adolescent psychopharmacology, we present here what we deem are the most common pitfalls, and how to avoid them, in child and adolescent psychopharmacology. In this paper, we specifically addressed common pitfalls in the pharmacological treatment of attention-deficit/hyperactivity disorder, anxiety, bipolar disorder, depression, obsessive-compulsive disorder and related disorders, and tic disorder. Pitfalls in the treatment of other disorders are addressed in a separate paper (part II).


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno Obsesivo Compulsivo , Psicofarmacología , Trastornos de Tic , Niño , Humanos , Adolescente , Trastorno Obsesivo Compulsivo/tratamiento farmacológico , Trastorno Obsesivo Compulsivo/epidemiología , Trastornos de Ansiedad/tratamiento farmacológico , Trastornos de Tic/epidemiología , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Comorbilidad
16.
Genes Brain Behav ; 23(1): e12882, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38359179

RESUMEN

The genetic correlates of extreme impulsive violence are poorly understood, and there have been few studies that have characterized a large group of affected individuals both clinically and genetically. We performed whole exome sequencing (WES) in 290 males with the life-course-persistent, extremely impulsively violent form of antisocial personality disorder (APD) and analyzed the spectrum of rare protein-truncating variants (rPTVs). Comparisons were made with 314 male controls and publicly available genotype data. Functional annotation tools were used for biological interpretation. Participants were significantly more likely to harbor rPTVs in genes that are intolerant to loss-of-function variants (odds ratio [OR] 2.06; p < 0.001), specifically expressed in brain (OR 2.80; p = 0.036) and enriched for those involved in neurotransmitter transport and synaptic processes. In 60 individuals (20%), we identified rPTVs that we classified as clinically relevant based on their clinical associations, biological function and gene expression patterns. Of these, 37 individuals harbored rPTVs in 23 genes that are associated with a monogenic neurological disorder, and 23 individuals harbored rPTVs in 20 genes reportedly intolerant to loss-of-function variants. The analysis presents evidence in support of a model where presence of either one or several private, functionally relevant mutations contribute significantly to individual risk of life-course-persistent APD and reveals multiple individuals who could be affected by clinically unrecognized neuropsychiatric Mendelian disease. Thus, Mendelian diseases and increased rPTV burden may represent important factors for the development of extremely impulsive violent life-course-persistent forms of APD irrespective of their clinical presentation.


Asunto(s)
Agresión , Trastorno de Personalidad Antisocial , Humanos , Masculino , Trastorno de Personalidad Antisocial/genética , Encéfalo , Violencia/psicología , Genotipo
17.
J Psychopharmacol ; 37(2): 119-134, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36476096

RESUMEN

The British Association for Psychopharmacology course on child and adolescent psychopharmacology has been run for more than 20 years and is currently a very popular course, attracting around 140 delegates/year from across the United Kingdom and abroad. As Faculty of recent sessions of the course, we have selected the most common questions we have been asked in recent years and provided evidence-based and/or expert-informed answers. We have included 27 questions and answers related to attention-deficit/hyperactivity disorder, anxiety and depressive disorders, autism spectrum disorder, bipolar disorder, eating disorders, epilepsy (in differential diagnosis or comorbid with mental health conditions), obsessive-compulsive disorder, personality disorders, psychotic spectrum disorders, and tics/Tourette syndrome in children and young people. We hope that this article will be helpful for prescribers in their daily clinical practice and we look forward to further, high-level evidence informing the answers to these and other questions in child and adolescent psychopharmacology.


Asunto(s)
Trastornos Mentales , Psicofarmacología , Psicotrópicos , Adolescente , Niño , Humanos , Psicotrópicos/uso terapéutico , Trastornos Mentales/tratamiento farmacológico
18.
Med ; 4(4): 217-219, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37060896

RESUMEN

Perhaps one of the most revolutionary next generation sequencing technologies is single-cell (SC) transcriptomics, which was recognized by Nature in 2013 as the method of the year. SC-technologies delve deep into genomics at the single-cell level, revealing previously restricted, valuable information on the identity of single cells, particularly highlighting their heterogeneity. Understanding the cellular heterogeneity of complex tissue provides insight about the gene expression and regulation across different biological and environmental conditions. This vast heterogeneity of cells and their markers makes identifying populations and sub-clusters especially difficult, even more so in rare cell types limited by the absence of rare sub-population markers. One particularly overlooked challenge is the lack of adequate ethnic representation in single-cell data. As the availability of cell types and their markers grow exponentially through new discoveries, the need to study ethnically driven heterogeneity becomes more feasible, while offering the opportunity to further elaborate ethnicity-related heterogeneity. In this commentary, we will discuss this major single-cell limitation particularly focusing on the repercussions it has on disease research, therapeutic design, and precision medicine.


Asunto(s)
Medicina de Precisión , Transcriptoma , Humanos , Transcriptoma/genética , Perfilación de la Expresión Génica , Genómica , Etnicidad/genética
19.
Sci Rep ; 13(1): 21547, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057384

RESUMEN

Duchenne muscular dystrophy (DMD) is a severe rare neuromuscular disorder caused by mutations in the X-linked dystrophin gene. Several mutations have been identified, yet the full mutational spectrum, and their phenotypic consequences, will require genotyping across different populations. To this end, we undertook the first detailed genotype and phenotype characterization of DMD in the Bangladeshi population. We investigated the rare mutational and phenotypic spectrum of the DMD gene in 36 DMD-suspected Bangladeshi participants using an economically affordable diagnostic strategy involving initial screening for exonic deletions in the DMD gene via multiplex PCR, followed by testing PCR-negative patients for mutations using whole exome sequencing. The deletion mapping identified two critical DMD gene hotspot regions (near proximal and distal ends, spanning exons 8-17 and exons 45-53, respectively) that comprised 95% (21/22) of the deletions for this population cohort. From our exome analysis, we detected two novel pathogenic hemizygous mutations in exons 21 and 42 of the DMD gene, and novel pathogenic recessive and loss of function variants in four additional genes: SGCD, DYSF, COL6A3, and DOK7. Our phenotypic analysis showed that DMD suspected participants presented diverse phenotypes according to the location of the mutation and which gene was impacted. Our study provides ethnicity specific new insights into both clinical and genetic aspects of DMD.


Asunto(s)
Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Mutación , Distrofina/genética , Genotipo , Reacción en Cadena de la Polimerasa Multiplex , Variación Biológica Poblacional
20.
Am J Med Genet B Neuropsychiatr Genet ; 159B(1): 5-12, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22095612

RESUMEN

The implications of the well known sex differences in the prevalence of autism spectrum disorder (ASD) are not well understood. The aim of this paper was to investigate whether these differences might be associated with differences in genetic liability. Individuals with ASD (970 families, 2,028 individuals) were recruited as part of the Autism Genome Project (AGP). The families were differentiated into families containing a female (either female-female or male-female) and those with only males. If the sex with the lower prevalence is associated with a greater genetic liability necessary to cross sex-specific thresholds, the males from female containing families should be more severely affected than males from male only families. Affected subjects from the different types of families with ASD were sampled and compared on the social reciprocity and repetitive behavior scores from the Autism Diagnostic Interview-Revised (ADI-R). In general, females had lower repetitive behavior scores than males. More importantly, males from female containing families had higher repetitive behavior scores than males from male-male families. No such differences were apparent on the social reciprocity scores. These results support the hypothesis of a multiple threshold model of genetic liability of ASD with females having a higher liability for affectation status, at least on the repetitive behavior dimension of the disorder. These data also support the dissociation of the different phenotypic dimensions of ASD in terms of its genetic architecture. The implications of these results for linkage and association studies are discussed.


Asunto(s)
Trastorno Autístico/genética , Predisposición Genética a la Enfermedad , Caracteres Sexuales , Conducta Estereotipada , Preescolar , Intervalos de Confianza , Femenino , Genoma Humano/genética , Humanos , Lactante , Análisis de los Mínimos Cuadrados , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA