Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 18(3): 303-312, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28114292

RESUMEN

B cells predominate in a quiescent state until an antigen is encountered, which results in rapid growth, proliferation and differentiation of the B cells. These distinct cell states are probably accompanied by differing metabolic needs, yet little is known about the metabolic control of B cell fate. Here we show that glycogen synthase kinase 3 (Gsk3) is a metabolic sensor that promotes the survival of naive recirculating B cells by restricting cell mass accumulation. In antigen-driven responses, Gsk3 was selectively required for regulation of B cell size, mitochondrial biogenesis, glycolysis and production of reactive oxygen species (ROS), in a manner mediated by the co-stimulatory receptor CD40. Gsk3 was required to prevent metabolic collapse and ROS-induced apoptosis after glucose became limiting, functioning in part by repressing growth dependent on the myelocytomatosis oncoprotein c-Myc. Notably, we found that Gsk3 was required for the generation and maintenance of germinal center B cells, which require high glycolytic activity to support growth and proliferation in a hypoxic microenvironment.


Asunto(s)
Linfocitos B/fisiología , Centro Germinal/inmunología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Animales , Antígenos CD19/genética , Antígenos CD19/metabolismo , Apoptosis/genética , Ligando de CD40/metabolismo , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Glucógeno Sintasa Quinasa 3 beta/genética , Glucólisis , Interleucina-4/metabolismo , Ratones , Ratones Noqueados , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
2.
Circ Res ; 131(7): 620-636, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36052698

RESUMEN

BACKGROUND: Heart failure is the leading cause of mortality, morbidity, and health care expenditures worldwide. Numerous studies have implicated GSK-3 (glycogen synthase kinase-3) as a promising therapeutic target for cardiovascular diseases. GSK-3 isoforms seem to play overlapping, unique and even opposing functions in the heart. Previously, we have shown that of the 2 isoforms of GSK-3, cardiac fibroblast GSK-3ß acts as a negative regulator of myocardial fibrosis in the ischemic heart. However, the role of cardiac fibroblast-GSK-3α in the pathogenesis of cardiac diseases is completely unknown. METHODS: To define the role of cardiac fibroblast-GSK-3α in myocardial fibrosis and heart failure, GSK-3α was deleted from fibroblasts or myofibroblasts with tamoxifen-inducible Tcf21- or Postn-promoter-driven Cre recombinase. Control and GSK-3α KO mice were subjected to cardiac injury and heart parameters were evaluated. The fibroblast kinome mapping was carried out to delineate molecular mechanism followed by in vivo and in vitro analysis. RESULTS: Fibroblast-specific GSK-3α deletion restricted fibrotic remodeling and preserved function of the injured heart. We observed reductions in cell migration, collagen gel contraction, α-SMA protein levels, and expression of ECM genes in TGFß1-treated KO fibroblasts, indicating that GSK-3α is required for myofibroblast transformation. Surprisingly, GSK-3α deletion did not affect SMAD3 activation, suggesting the profibrotic role of GSK-3α is SMAD3 independent. The molecular studies confirmed decreased ERK signaling in GSK-3α-KO CFs. Conversely, adenovirus-mediated expression of a constitutively active form of GSK-3α (Ad-GSK-3αS21A) in fibroblasts increased ERK activation and expression of fibrogenic proteins. Importantly, this effect was abolished by ERK inhibition. CONCLUSIONS: GSK-3α-mediated MEK-ERK activation is a critical profibrotic signaling circuit in the injured heart, which operates independently of the canonical TGF-ß1-SMAD3 pathway. Therefore, strategies to inhibit the GSK-3α-MEK-ERK signaling circuit could prevent adverse fibrosis in diseased hearts.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Animales , Cardiomiopatías/metabolismo , Colágeno/metabolismo , Quinasas MAP Reguladas por Señal Extracelular , Fibroblastos/metabolismo , Fibrosis , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3/farmacología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Insuficiencia Cardíaca/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/farmacología , Miofibroblastos/metabolismo , Tamoxifeno/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Quinasas raf
3.
J Proteome Res ; 22(3): 977-989, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36779422

RESUMEN

Functional differentiation of the two isoforms of the protein-serine/threonine kinase, glycogen synthase kinase-3 (GSK-3), is an unsettled area of research. The isoforms are highly similar in structure and are largely redundant, though there is also evidence for specific roles. Identification of isoform-specific protein interactors may elucidate the differences in function and provide insight into isoform-selective regulation. We therefore sought to identify novel GSK-3 interaction partners and to examine differences in the interactomes of the two isoforms using both affinity purification and proximity-dependent biotinylation (BioID) mass spectrometry methods. While the interactomes of the two isomers are highly similar in HEK293 cells, BioID in HeLa cells yielded a variety of preys that are preferentially associated with one of the two isoforms. DCP1B, which favored GSK-3α, and MISP, which favored GSK-3ß, were evaluated for reciprocal interactions. The differences in interactions between isoforms may help in understanding the distinct functions and regulation of the two isoforms as well as offer avenues for the development of isoform-specific strategies.


Asunto(s)
Glucógeno Sintasa Quinasa 3 , Humanos , Células HeLa , Glucógeno Sintasa Quinasa 3 beta , Células HEK293 , Isoformas de Proteínas/genética
4.
J Cell Physiol ; 237(3): 1804-1817, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34812500

RESUMEN

Cardiomyopathy is an irreparable loss and novel strategies are needed to induce resident cardiac progenitor cell (CPC) proliferation in situ to enhance the possibility of cardiac regeneration. Here, we sought to identify the potential roles of glycogen synthase kinase-3ß (GSK-3ß), a critical regulator of cell proliferation and differentiation, in CPC proliferation post-myocardial infarction (MI). Cardiomyocyte-specific conditional GSK-3ß knockout (cKO) and littermate control mice were employed and challenged with MI. Though cardiac left ventricular chamber dimension and contractile functions were comparable at 2 weeks post-MI, cKO mice displayed significantly preserved LV chamber and contractile function versus control mice at 4 weeks post-MI. Consistent with protective phenotypes, an increased percentage of c-kit-positive cells (KPCs) were observed in the cKO hearts at 4 and 6 weeks post-MI which was accompanied by increased levels of cardiomyocyte proliferation. Further analysis revealed that the observed increased number of KPCs in the ischemic cKO hearts was mainly from a cardiac lineage, as the majority of identified KPCs were negative for the hematopoietic lineage marker, CD45. Mechanistically, cardiomyocyte-GSK-3ß profoundly suppresses the expression and secretion of growth factors, including basic-fibroblast growth factor, angiopoietin-2, erythropoietin, stem cell factor, platelet-derived growth factor-BB, granulocyte colony-stimulating factor, and vascular endothelial growth factor, post-hypoxia. In conclusion, our findings strongly suggest that loss of cardiomyocyte-GSK-3ß promotes cardiomyocyte and resident CPC proliferation post-MI. The induction of cardiomyocyte and CPC proliferation in the ischemic cKO hearts is potentially regulated by autocrine and paracrine signaling governed by dysregulated growth factors post-MI. A strategy to inhibit cardiomyocyte-GSK-3ß could be helpful for the promotion of in situ cardiac regeneration post-ischemic injury.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/metabolismo , Infarto del Miocardio , Miocitos Cardíacos , Animales , Proliferación Celular/genética , Glucógeno Sintasa Quinasa 3 beta/genética , Ratones , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Remodelación Ventricular/genética
5.
Nat Rev Mol Cell Biol ; 11(6): 404-13, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20461097

RESUMEN

Signal transduction pathways interact at various levels to define tissue morphology, size and differentiation during development. Understanding the mechanisms by which these pathways collude has been greatly enhanced by recent insights into how shared components are independently regulated and how the activity of one system is contextualized by others. Traditionally, it has been assumed that the components of signalling pathways show pathway fidelity and act with a high degree of autonomy. However, as illustrated by the Wnt and Hippo pathways, there is increasing evidence that components are often shared between multiple pathways and other components talk to each other through multiple mechanisms.


Asunto(s)
Transducción de Señal , Adipocitos/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Humanos , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Wnt/metabolismo
6.
FASEB J ; 34(10): 13597-13608, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32813289

RESUMEN

Acute kidney injury (AKI) is characterized by injury to the tubular epithelium that leads to the sudden loss of renal function. Proper tubular regeneration is essential to prevent progression to chronic kidney disease. In this study, we examined the role of FoxM1, a forkhead box family member transcription factor in tubular repair after AKI. Renal FoxM1 expression increased after renal ischemia/reperfusion (I/R)-induced AKI in mouse kidneys. Treatment with thiostrepton, a FoxM1 inhibitor, reduced FoxM1 regulated pro-proliferative factors and cell proliferation in vitro, and tubular regeneration in mouse kidneys after AKI. Glycogen synthase kinase-3 (GSK3) was found to be an upstream regulator of FoxM1 because GSK3 inhibition or renal tubular GSK3ß gene deletion significantly increased FoxM1 expression, and improved tubular repair and renal function. GSK3 inactivation increased ß-catenin, Cyclin D1, and c-Myc, and reduced cell cycle inhibitors p21 and p27. Importantly, thiostrepton treatment abolished the improved tubular repair in GSK3ß knockout mice following AKI. These results demonstrate that FoxM1 is important for renal tubular regeneration following AKI and that GSK3ß suppresses tubular repair by inhibiting FoxM1.


Asunto(s)
Lesión Renal Aguda/metabolismo , Proteína Forkhead Box M1/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Daño por Reperfusión/metabolismo , Animales , Línea Celular , Proliferación Celular , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Túbulos Renales/patología , Túbulos Renales/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Regeneración
7.
Immunity ; 37(5): 800-12, 2012 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-23142783

RESUMEN

Interleukin-1 (IL-1)-induced activation of the mTOR kinase pathway has major influences on Th17 cell survival, proliferation, and effector function. Via biochemical and genetic approaches, the kinases IKKi and GSK3α were identified as the critical intermediate signaling components for IL-1-induced AKT activation, which in turn activated mTOR. Although insulin-induced AKT activation is known to phosphorylate and inactivate GSK3α and GSK3ß, we found that GSK3α but not GSK3ß formed a constitutive complex to phosphorylate and suppress AKT activation, showing that a reverse action from GSK to AKT can take place. Upon IL-1 stimulation, IKKi was activated to mediate GSK3α phosphorylation at S21, thereby inactivating GSK3α to promote IL-1-induced AKT-mTOR activation. Thus, IKKi has a critical role in Th17 cell maintenance and/or proliferation through the GSK-AKT-mTOR pathway, implicating the potential of IKKi as a therapeutic target.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Quinasa I-kappa B/metabolismo , Interleucina-1/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Células Th17/metabolismo , Animales , Procesos de Crecimiento Celular/fisiología , Activación Enzimática , Glucógeno Sintasa Quinasa 3/inmunología , Glucógeno Sintasa Quinasa 3 beta , Insulina/inmunología , Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Fosforilación , Proteínas Serina-Treonina Quinasas/inmunología , Proteínas Proto-Oncogénicas c-akt/inmunología , Transducción de Señal , Serina-Treonina Quinasas TOR/inmunología , Células Th17/citología , Células Th17/enzimología , Células Th17/inmunología
8.
J Mol Cell Cardiol ; 130: 65-75, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30928428

RESUMEN

Chronic pressure-overload (PO)- induced cardiomyopathy is one of the leading causes of left ventricular (LV) remodeling and heart failure. The role of the α isoform of glycogen synthase kinase-3 (GSK-3α) in PO-induced cardiac remodeling is unclear and its downstream molecular targets are largely unknown. To investigate the potential roles of GSK-3α, cardiomyocyte-specific GSK-3α conditional knockout (cKO) and control mice underwent trans-aortic constriction (TAC) or sham surgeries. Cardiac function in the cKOs and littermate controls declined equally up to 2 weeks of TAC. At 4 week, cKO animals retained concentric LV remodeling and showed significantly less decline in contractile function both at systole and diastole, vs. controls which remained same until the end of the study (6 wk). Histological analysis confirmed preservation of LV chamber and protection against TAC-induced cellular hypertrophy in the cKO. Consistent with attenuated hypertrophy, significantly lower level of cardiomyocyte apoptosis was observed in the cKO. Mechanistically, GSK-3α was found to regulate mitochondrial permeability transition pore (mPTP) opening and GSK-3α-deficient mitochondria showed delayed mPTP opening in response to Ca2+ overload. Consistently, overexpression of GSK-3α in cardiomyocytes resulted in elevated Bax expression, increased apoptosis, as well as a reduction of maximum respiration capacity and cell viability. Taken together, we show for the first time that GSK-3α regulates mPTP opening under pathological conditions, likely through Bax overexpression. Genetic ablation of cardiomyocyte GSK-3α protects against chronic PO-induced cardiomyopathy and adverse LV remodeling, and preserves contractile function. Selective inhibition of GSK-3α using isoform-specific inhibitors could be a viable therapeutic strategy to limit PO-induced heart failure.


Asunto(s)
Apoptosis , Cardiomegalia/enzimología , Glucógeno Sintasa Quinasa 3/metabolismo , Insuficiencia Cardíaca/enzimología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Miocitos Cardíacos/enzimología , Animales , Cardiomegalia/genética , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Glucógeno Sintasa Quinasa 3/genética , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Ratones , Ratones Noqueados , Proteínas de Transporte de Membrana Mitocondrial/genética , Poro de Transición de la Permeabilidad Mitocondrial , Contracción Miocárdica/genética , Miocitos Cardíacos/patología , Remodelación Ventricular/genética
9.
Breast Cancer Res ; 21(1): 18, 2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30704524

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) represents a heterogeneous group of ER- and HER2-negative tumors with poor clinical outcome. We recently reported that Pten-loss cooperates with low expression of microRNA-145 to induce aggressive TNBC-like lesions in mice. To systematically identify microRNAs that cooperate with PTEN-loss to induce aggressive human BC, we screened for miRNAs whose expression correlated with PTEN mRNA levels and determined the prognostic power of each PTEN-miRNA pair alone and in combination with other miRs. METHODS: Publically available data sets with mRNA, microRNA, genomics, and clinical outcome were interrogated to identify miRs that correlate with PTEN expression and predict poor clinical outcome. Alterations in genomic landscape and signaling pathways were identified in most aggressive TNBC subgroups. Connectivity mapping was used to predict response to therapy. RESULTS: In TNBC, PTEN loss cooperated with reduced expression of hsa-miR-4324, hsa-miR-125b, hsa-miR-381, hsa-miR-145, and has-miR136, all previously implicated in metastasis, to predict poor prognosis. A subgroup of TNBC patients with PTEN-low and reduced expression of four or five of these miRs exhibited the worst clinical outcome relative to other TNBCs (hazard ratio (HR) = 3.91; P < 0.0001), and this was validated on an independent cohort (HR = 4.42; P = 0.0003). The PTEN-low/miR-low subgroup showed distinct oncogenic alterations as well as TP53 mutation, high RB1-loss signature and high MYC, PI3K, and ß-catenin signaling. This lethal subgroup almost completely overlapped with TNBC patients selected on the basis of Pten-low and RB1 signature loss or ß-catenin signaling-high. Connectivity mapping predicted response to inhibitors of the PI3K pathway. CONCLUSIONS: This analysis identified microRNAs that define a subclass of highly lethal TNBCs that should be prioritized for aggressive therapy.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , MicroARNs/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Biomarcadores de Tumor/genética , Mama/patología , Conjuntos de Datos como Asunto , Femenino , Perfilación de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Fosfohidrolasa PTEN/genética , Selección de Paciente , Medicina de Precisión/métodos , Pronóstico , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas de Unión a Retinoblastoma/metabolismo , Neoplasias de la Mama Triple Negativas/mortalidad , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/terapia , Ubiquitina-Proteína Ligasas/metabolismo , Vía de Señalización Wnt/genética
10.
Biochem Cell Biol ; 97(6): 665-669, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31112656

RESUMEN

The strength of the scientific process is its immunity from human frailties. The built-in error correction and robustness of principles protect and nurture truth, despite both intended and unintended errors and naivety. What it doesn't secure is understanding of how the scientific sausage is made. Here, a scientific journey revolving around a single protein that spans nearly 35 years is used to illustrate the twists and turns that can accompany any scientific path. Lessons learned from such exploration speak to the need for story-telling in communicating scientific meaning - and the effectiveness of this will influence future investment and understanding of the scientific endeavor.


Asunto(s)
Proteínas Quinasas/metabolismo , Ciencia , Animales , Humanos
11.
J Immunol ; 199(12): 4056-4065, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29109121

RESUMEN

The decision between T cell activation and tolerance is governed by the spatial and temporal integration of diverse molecular signals and events occurring downstream of TCR and costimulatory or coinhibitory receptor engagement. The PI3K-protein kinase B (PKB; also known as Akt) signaling pathway is a central axis in mediating proximal signaling events of TCR and CD28 engagement in T cells. Perturbation of the PI3K-PKB pathway, or the loss of negative regulators of T cell activation, such as the E3 ubiquitin ligase Cbl-b, have been reported to lead to increased susceptibility to autoimmunity. In this study, we further examined the molecular pathway linking PKB and Cbl-b in murine models. Our data show that the protein kinase GSK-3, one of the first targets identified for PKB, catalyzes two previously unreported phosphorylation events at Ser476 and Ser480 of Cbl-b. GSK-3 inactivation by PKB abrogates phosphorylation of Cbl-b at these two sites and results in reduced Cbl-b protein levels. We further show that constitutive activation of PKB in vivo results in a loss of tolerance that is mediated through the downregulation of Cbl-b. Altogether, these data indicate that the PI3K-PKB-GSK-3 pathway is a novel regulatory axis that is important for controlling the decision between T cell activation and tolerance via Cbl-b.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Glucógeno Sintasa Quinasa 3/fisiología , Tolerancia Inmunológica/fisiología , Activación de Linfocitos/fisiología , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Subgrupos de Linfocitos T/enzimología , Secuencia de Aminoácidos , Animales , Autoinmunidad/fisiología , Activación Enzimática , Regulación de la Expresión Génica/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Fosfatidilinositol 3-Quinasas/fisiología , Fosforilación , Fosfoserina/metabolismo , Isoformas de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-akt/fisiología , Alineación de Secuencia , Transducción de Señal/fisiología , Especificidad de la Especie , Organismos Libres de Patógenos Específicos , Subgrupos de Linfocitos T/inmunología
12.
Biol Reprod ; 99(2): 384-394, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29385396

RESUMEN

Glycogen synthase kinase 3 (GSK3) is a highly conserved protein kinase regulating key cellular functions. Its two isoforms, GSK3α and GSK3ß, are encoded by distinct genes. In most tissues the two isoforms are functionally interchangeable, except in the developing embryo where GSK3ß is essential. One functional allele of either of the two isoforms is sufficient to maintain normal tissue functions. Both GSK3 isoforms, present in sperm from several species including human, are suggested to play a role in epididymal initiation of sperm motility. Using genetic approaches, we have tested requirement for each of the two GSK3 isoforms in testis and sperm. Both GSK3 isoforms are expressed at high levels during the onset of spermatogenesis. Conditional knockout of GSK3α, but not GSK3ß, in developing testicular germ cells in mice results in male infertility. Mice lacking one allele each of GSK3α and GSK3ß are fertile. Despite overlapping expression and localization in differentiating spermatids, GSK3ß does not substitute for GSK3α. Loss of GSK3α impairs sperm hexokinase activity resulting in low ATP levels. Net adenine nucleotide levels in caudal sperm lacking GSK3α resemble immature caput epididymal sperm. Changes in the association of the protein phosphatase PP1γ2 with its protein interactors occurring during epididymal sperm maturation is impaired in sperm lacking GSK3α. The isoform-specific requirement for GSK3α is likely due to its specific binding partners in the sperm principal piece. Testis and sperm are unique in their specific requirement of GSK3α for normal function and male fertility.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Infertilidad Masculina/metabolismo , Isoformas de Proteínas/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo , Alelos , Animales , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta/genética , Infertilidad Masculina/genética , Masculino , Ratones , Ratones Noqueados , Fosforilación , Isoformas de Proteínas/genética , Motilidad Espermática/fisiología , Espermatogénesis/genética
13.
Circ Res ; 118(8): 1208-22, 2016 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-26976650

RESUMEN

RATIONALE: Cardiac myocyte-specific deletion of either glycogen synthase kinase (GSK)-3α and GSK-3ß leads to cardiac protection after myocardial infarction, suggesting that deletion of both isoforms may provide synergistic protection. This is an important consideration because of the fact that all GSK-3-targeted drugs, including the drugs already in clinical trial target both isoforms of GSK-3, and none are isoform specific. OBJECTIVE: To identify the consequences of combined deletion of cardiac myocyte GSK-3α and GSK-3ß in heart function. METHODS AND RESULTS: We generated tamoxifen-inducible cardiac myocyte-specific mice lacking both GSK-3 isoforms (double knockout). We unexpectedly found that cardiac myocyte GSK-3 is essential for cardiac homeostasis and overall survival. Serial echocardiographic analysis reveals that within 2 weeks of tamoxifen treatment, double-knockout hearts leads to excessive dilatative remodeling and ventricular dysfunction. Further experimentation with isolated adult cardiac myocytes and fibroblasts from double-knockout implicated cardiac myocytes intrinsic factors responsible for observed phenotype. Mechanistically, loss of GSK-3 in adult cardiac myocytes resulted in induction of mitotic catastrophe, a previously unreported event in cardiac myocytes. Double-knockout cardiac myocytes showed cell cycle progression resulting in increased DNA content and multinucleation. However, increased cell cycle activity was rivaled by marked activation of DNA damage, cell cycle checkpoint activation, and mitotic catastrophe-induced apoptotic cell death. Importantly, mitotic catastrophe was also confirmed in isolated adult cardiac myocytes. CONCLUSIONS: Together, our findings suggest that cardiac myocyte GSK-3 is required to maintain normal cardiac homeostasis, and its loss is incompatible with life because of cell cycle dysregulation that ultimately results in a severe fatal dilated cardiomyopathy.


Asunto(s)
Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/mortalidad , Glucógeno Sintasa Quinasa 3/deficiencia , Mitosis/fisiología , Miocitos Cardíacos/metabolismo , Animales , Cardiomiopatía Dilatada/patología , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/patología
14.
Development ; 141(21): 4076-86, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25273085

RESUMEN

Balanced control of neural progenitor maintenance and neuron production is crucial in establishing functional neural circuits during brain development, and abnormalities in this process are implicated in many neurological diseases. However, the regulatory mechanisms of neural progenitor homeostasis remain poorly understood. Here, we show that mammalian target of rapamycin (mTOR) is required for maintaining neural progenitor pools and plays a key role in mediating glycogen synthase kinase 3 (GSK3) signaling during brain development. First, we generated and characterized conditional mutant mice exhibiting deletion of mTOR in neural progenitors and neurons in the developing brain using Nestin-cre and Nex-cre lines, respectively. The elimination of mTOR resulted in abnormal cell cycle progression of neural progenitors in the developing brain and thereby disruption of progenitor self-renewal. Accordingly, production of intermediate progenitors and postmitotic neurons were markedly suppressed. Next, we discovered that GSK3, a master regulator of neural progenitors, interacts with mTOR and controls its activity in cortical progenitors. Finally, we found that inactivation of mTOR activity suppresses the abnormal proliferation of neural progenitors induced by GSK3 deletion. Our findings reveal that the interaction between mTOR and GSK3 signaling plays an essential role in dynamic homeostasis of neural progenitors during brain development.


Asunto(s)
Encéfalo/embriología , Encéfalo/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Encéfalo/citología , Ciclo Celular/genética , Ciclo Celular/fisiología , Células Cultivadas , Femenino , Glucógeno Sintasa Quinasa 3/genética , Inmunohistoquímica , Ratones , Embarazo , Transducción de Señal/genética , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/genética
15.
Toxicol Appl Pharmacol ; 337: 85-94, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29074359

RESUMEN

Previous studies had shown that xanthatin, a natural xanthanolide sesquiterpene lactone, could induce mitotic arrest and apoptosis in non-small cell lung cancer (NSCLC) cells. Here, we examined whether the DNA damage response (DDR) could be a primary cytotoxic event underlying xanthatin-mediated anti-tumor activity. Using EdU incorporation assay in combination with novel imaging flow cytometry, our data indicated that xanthatin suppressed DNA replication, prevented cells from G2/M entry and increased the spot count of γH2AX nuclear foci. Given that checkpoint kinase 1 (Chk1) represents a core component in DDR-mediated cell cycle transition and the phosphorylation on Ser-345 is essential for kinase activation and function, we surprisingly found xanthatin distinctly modulated Ser-345 phosphorylation of Chk1 in A549 and H1299 cells. Further investigation on Cdc25C/CDK1/CyclinB1 signaling cascade in the absence or presence of pharmacological DDR inhibitors showed that xanthatin directly destabilized the protein levels of Cdc25C, and recovery of p53 expression in p53-deficient H1299 cells further intensified xanthatin-mediated inhibition of Cdc25C, suggesting p53-dependent regulation of Cdc25C in a DDR machinery. Moreover, exogenous expression of Cdc25C was also substantially repressed by xanthatin and partially impaired xanthatin-induced G2 arrest. In addition, xanthatin could induce accumulation of ubiquitinated Cdc25C without undergoing further proteasomal degradation. However, an alternative lysosomal proteolysis of Cdc25C was observed. Interestingly, lysosome-like vesicles were produced upon xanthatin treatment, accompanied by rapid accumulation of lysosomal associated membrane protein LAPM-1. Furthermore, vacuolar proton (V)-ATPases inhibitor bafilomycin A1 and lysosomal proteases inhibitor leupeptin could remarkably overturn the levels of Cdc25C in xanthatin-treated H1299 cells. Altogether, these data provide insight into how xanthatin can be effectively targeted DDR molecules towards certain tumors.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Daño del ADN , Furanos/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Lisosomas/efectos de los fármacos , Fosfatasas cdc25/metabolismo , Células A549 , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Replicación del ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Estabilidad de Enzimas , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Histonas/metabolismo , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/enzimología , Fosforilación , Proteolisis , Factores de Tiempo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitinación , ATPasas de Translocación de Protón Vacuolares/metabolismo , Fosfatasas cdc25/genética
16.
Circ Res ; 116(1): 138-49, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25552693

RESUMEN

Glycogen synthase kinase-3 (GSK-3) is one of the few signaling molecules that regulate a truly astonishing number of critical intracellular signaling pathways. It has been implicated in several diseases including heart failure, bipolar disorder, diabetes mellitus, Alzheimer disease, aging, inflammation, and cancer. Furthermore, a recent clinical trial has validated the feasibility of targeting GSK-3 with small molecule inhibitors for human diseases. In the current review, we will focus on its expanding role in the heart, concentrating primarily on recent studies that have used cardiomyocyte- and fibroblast-specific conditional gene deletion in mouse models. We will highlight the role of the GSK-3 isoforms in various pathological conditions including myocardial aging, ischemic injury, myocardial fibrosis, and cardiomyocyte proliferation. We will discuss our recent findings that deletion of GSK-3α specifically in cardiomyocytes attenuates ventricular remodeling and cardiac dysfunction after myocardial infarction by limiting scar expansion and promoting cardiomyocyte proliferation. The recent emergence of GSK-3ß as a regulator of myocardial fibrosis will also be discussed. We will review our recent findings that specific deletion of GSK-3ß in cardiac fibroblasts leads to fibrogenesis, left ventricular dysfunction, and excessive scarring in the ischemic heart. Finally, we will examine the underlying mechanisms that drive the aberrant myocardial fibrosis in the models in which GSK-3ß is specifically deleted in cardiac fibroblasts. We will summarize these recent results and offer explanations, whenever possible, and hypotheses when not. For these studies we will rely heavily on our models and those of others to reconcile some of the apparent inconsistencies in the literature.


Asunto(s)
Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/enzimología , Fármacos Cardiovasculares/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Animales , Inhibidores Enzimáticos/administración & dosificación , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos
17.
Circulation ; 130(5): 419-30, 2014 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-24899689

RESUMEN

BACKGROUND: Myocardial infarction-induced remodeling includes chamber dilatation, contractile dysfunction, and fibrosis. Of these, fibrosis is the least understood. After myocardial infarction, activated cardiac fibroblasts deposit extracellular matrix. Current therapies to prevent fibrosis are inadequate, and new molecular targets are needed. METHODS AND RESULTS: Herein we report that glycogen synthase kinase-3ß (GSK-3ß) is phosphorylated (inhibited) in fibrotic tissues from ischemic human and mouse heart. Using 2 fibroblast-specific GSK-3ß knockout mouse models, we show that deletion of GSK-3ß in cardiac fibroblasts leads to fibrogenesis, left ventricular dysfunction, and excessive scarring in the ischemic heart. Deletion of GSK-3ß induces a profibrotic myofibroblast phenotype in isolated cardiac fibroblasts, in post-myocardial infarction hearts, and in mouse embryonic fibroblasts deleted for GSK-3ß. Mechanistically, GSK-3ß inhibits profibrotic transforming growth factor-ß1/SMAD-3 signaling via interactions with SMAD-3. Moreover, deletion of GSK-3ß resulted in the significant increase of SMAD-3 transcriptional activity. This pathway is central to the pathology because a small-molecule inhibitor of SMAD-3 largely prevented fibrosis and limited left ventricular remodeling. CONCLUSIONS: These studies support targeting GSK-3ß in myocardial fibrotic disorders and establish critical roles of cardiac fibroblasts in remodeling and ventricular dysfunction.


Asunto(s)
Fibroblastos/enzimología , Glucógeno Sintasa Quinasa 3/metabolismo , Isquemia Miocárdica/metabolismo , Miocardio/enzimología , Remodelación Ventricular/fisiología , Anciano , Animales , Activación Enzimática/fisiología , Matriz Extracelular/metabolismo , Fibroblastos/citología , Fibrosis/metabolismo , Fibrosis/patología , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta , Humanos , Masculino , Ratones Noqueados , Persona de Mediana Edad , Isquemia Miocárdica/patología , Miocardio/citología , Cultivo Primario de Células , ARN Interferente Pequeño/genética , Proteína smad3/metabolismo , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/patología
18.
Am J Physiol Renal Physiol ; 308(6): F650-60, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25608967

RESUMEN

In mammals, glycogen synthase kinase (GSK)3 comprises GSK3α and GSK3ß isoforms. GSK3ß has been shown to play a role in the ability of kidneys to concentrate urine by regulating vasopressin-mediated water permeability of collecting ducts, whereas the role of GSK3α has yet to be discerned. To investigate the role of GSK3α in urine concentration, we compared GSK3α knockout (GSK3αKO) mice with wild-type (WT) littermates. Under normal conditions, GSK3αKO mice had higher water intake and urine output. GSK3αKO mice also showed reduced urine osmolality and aquaporin-2 levels but higher urinary vasopressin. When water deprived, they failed to concentrate their urine to the same level as WT littermates. The addition of 1-desamino-8-d-arginine vasopressin to isolated inner medullary collecting ducts increased the cAMP response in WT mice, but this response was reduced in GSK3αKO mice, suggesting reduced responsiveness to vasopressin. Gene silencing of GSK3α in mpkCCD cells also reduced forskolin-induced aquaporin-2 expression. When treated with LiCl, an isoform nonselective inhibitor of GSK3 and known inducer of polyuria, WT mice developed significant polyuria within 6 days. However, in GSK3αKO mice, the polyuric response was markedly reduced. This study demonstrates, for the first time, that GSK3α could play a crucial role in renal urine concentration and suggest that GSK3α might be one of the initial targets of Li(+) in LiCl-induced nephrogenic diabetes insipidus.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Túbulos Renales Colectores/enzimología , Orina/fisiología , Animales , Acuaporina 2/metabolismo , Silenciador del Gen , Glucógeno Sintasa Quinasa 3/genética , Cloruro de Litio , Ratones Noqueados , Poliuria/genética
19.
Kidney Int ; 87(6): 1164-75, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25629553

RESUMEN

Polycystic kidney diseases (PKDs) are inherited disorders characterized by the formation of fluid filled renal cysts. Elevated cAMP levels in PKDs stimulate progressive cyst enlargement involving cell proliferation and transepithelial fluid secretion often leading to end-stage renal disease. The glycogen synthase kinase-3 (GSK3) family of protein kinases consists of GSK3α and GSK3ß isoforms and has a crucial role in multiple cellular signaling pathways. We previously found that GSK3ß, a regulator of cell proliferation, is also crucial for cAMP generation and vasopressin-mediated urine concentration by the kidneys. However, the role of GSK3ß in the pathogenesis of PKDs is not known. Here we found that GSK3ß expression and activity were markedly upregulated and associated with cyst-lining epithelia in the kidneys of mice and humans with PKD. Renal collecting duct-specific gene knockout of GSK3ß or pharmacological inhibition of GSK3 effectively slowed down the progression of PKD in mouse models of autosomal recessive or autosomal dominant PKD. GSK3 inactivation inhibited cAMP generation and cell proliferation resulting in reduced cyst expansion, improved renal function, and extended life span. GSK3ß inhibition also reduced pERK, c-Myc, and cyclin-D1, known mitogens in proliferation of cystic epithelial cells. Thus, GSK3ß has a novel functional role in PKD pathophysiology, and its inhibition may be therapeutically useful to slow down cyst expansion and progression of PKD.


Asunto(s)
AMP Cíclico/metabolismo , Quistes/metabolismo , Quistes/patología , Glucógeno Sintasa Quinasa 3/metabolismo , Enfermedades Renales Poliquísticas/enzimología , Animales , Proliferación Celular/efectos de los fármacos , Ciclina D1/metabolismo , Inhibidores Enzimáticos/farmacología , Células Epiteliales/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta , Humanos , Riñón/enzimología , Túbulos Renales Colectores/enzimología , Ratones , Ratones Noqueados , Tamaño de los Órganos/efectos de los fármacos , Enfermedades Renales Poliquísticas/patología , Enfermedades Renales Poliquísticas/fisiopatología , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Mensajero/metabolismo , Tiadiazoles/farmacología
20.
J Immunol ; 190(10): 5000-11, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23606540

RESUMEN

Experimental autoimmune encephalomyelitis (EAE) is a rodent model of multiple sclerosis (MS), a debilitating autoimmune disease of the CNS, for which only limited therapeutic interventions are available. Because MS is mediated in part by autoreactive T cells, particularly Th17 and Th1 cells, in the current study, we tested whether inhibitors of glycogen synthase kinase-3 (GSK3), previously reported to reduce Th17 cell generation, also alter Th1 cell production or alleviate EAE. GSK3 inhibitors were found to impede the production of Th1 cells by reducing STAT1 activation. Molecularly reducing the expression of either of the two GSK3 isoforms demonstrated that Th17 cell production was sensitive to reduced levels of GSK3ß and Th1 cell production was inhibited in GSK3α-deficient cells. Administration of the selective GSK3 inhibitors TDZD-8, VP2.51, VP0.7, or L803-mts significantly reduced the clinical symptoms of myelin oligodendrocyte glycoprotein35-55-induced EAE in mice, nearly eliminating the chronic progressive phase, and reduced the number of Th17 and Th1 cells in the spinal cord. Administration of TDZD-8 or L803-mts after the initial disease episode alleviated clinical symptoms in a relapsing-remitting model of proteolipid protein139-151-induced EAE. Furthermore, deletion of GSK3ß specifically in T cells was sufficient to alleviate myelin oligodendrocyte glycoprotein35-55-induced EAE. These results demonstrate the isoform-selective effects of GSK3 on T cell generation and the therapeutic effects of GSK3 inhibitors in EAE, as well as showing that GSK3 inhibition in T cells is sufficient to reduce the severity of EAE, suggesting that GSK3 may be a feasible target for developing new therapeutic interventions for MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Células TH1/metabolismo , Células Th17/metabolismo , Animales , Encefalomielitis Autoinmune Experimental/inmunología , Activación Enzimática , Femenino , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Masculino , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple , Glicoproteína Mielina-Oligodendrócito , Oligopéptidos/farmacología , Fragmentos de Péptidos , Isoformas de Proteínas/metabolismo , Factor de Transcripción STAT1/metabolismo , Médula Espinal/citología , Médula Espinal/inmunología , Células TH1/efectos de los fármacos , Células TH1/inmunología , Células Th17/efectos de los fármacos , Células Th17/inmunología , Tiadiazoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA