Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Macromol Rapid Commun ; 44(24): e2300424, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37821091

RESUMEN

This study demonstrates how either a heated flat or cylindrical collector enables defect-free melt electrowriting (MEW) of complex geometries from high melting temperature polymers. The open-source "MEWron" printer uses nylon-12 filament and combined with a heated flat or cylindrical collector, produces well-defined fibers with diameters ranging from 33 ± 4 to 95 ± 3 µm. Processing parameters for stable jet formation and minimal defects based on COMSOL thermal modeling for hardware design are optimized. The balance of processing temperature and collector temperature is achieved to achieve auxetic patterns, while showing that annealing nylon-12 tubes significantly alters their mechanical properties. The samples exhibit varied pore sizes and wall thicknesses influenced by jet dynamics and fiber bridging. Tensile testing shows nylon-12 tubes are notably stronger than poly(ε-caprolactone) ones and while annealing has limited impact on tensile strength, yield, and elastic modulus, it dramatically reduces elongation. The equipment described and material used broadens MEW applications for high melting point polymers and highlights the importance of cooling dynamics for reproducible samples.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Polímeros , Nylons
2.
J Theor Biol ; 528: 110852, 2021 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-34358535

RESUMEN

Tissue growth in three-dimensional (3D) printed scaffolds enables exploration and control of cell behaviour in more biologically realistic geometries than that allowed by traditional 2D cell culture. Cell proliferation and migration in these experiments have yet to be explicitly characterised, limiting the ability of experimentalists to determine the effects of various experimental conditions, such as scaffold geometry, on cell behaviour. We consider tissue growth by osteoblastic cells in melt electro-written scaffolds that comprise thin square pores with sizes that were deliberately increased between experiments. We collect highly detailed temporal measurements of the average cell density, tissue coverage, and tissue geometry. To quantify tissue growth in terms of the underlying cell proliferation and migration processes, we introduce and calibrate a mechanistic mathematical model based on the Porous-Fisher reaction-diffusion equation. Parameter estimates and uncertainty quantification through profile likelihood analysis reveal consistency in the rate of cell proliferation and steady-state cell density between pore sizes. This analysis also serves as an important model verification tool: while the use of reaction-diffusion models in biology is widespread, the appropriateness of these models to describe tissue growth in 3D scaffolds has yet to be explored. We find that the Porous-Fisher model is able to capture features relating to the cell density and tissue coverage, but is not able to capture geometric features relating to the circularity of the tissue interface. Our analysis identifies two distinct stages of tissue growth, suggests several areas for model refinement, and provides guidance for future experimental work that explores tissue growth in 3D printed scaffolds.


Asunto(s)
Impresión Tridimensional , Andamios del Tejido , Proliferación Celular , Análisis de Datos , Porosidad , Ingeniería de Tejidos
3.
Macromol Rapid Commun ; 42(23): e2100433, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34668263

RESUMEN

Melt electrowriting (MEW) has been widely used to process polycaprolactone (PCL) into highly ordered microfiber scaffolds with controllable architecture and geometry. However, the integrity of PCL during specific processes involved in routine MEW scaffold development has not yet been thoroughly investigated. This study investigates the impact of MEW processing on PCL following exposure to high temperatures required for melt extrusion as well as atmospheric plasma, a widely used surface treatment for improving MEW scaffold hydrophilicity. The change in polymer molecular weight and melt temperature is characterized, in comparing unprocessed and processed samples, in addition to analysis of the mechanical and surface properties of the scaffolds. No significant difference in the molecular weight or mechanical properties of the PCL scaffolds is evident following 5 days of cyclic heating to 90 °C. Exposure to plasma for up to 5 min significantly increased hydrophilicity and surface adhesion force, characterized via contact angle and atomic force microscope, however, significant polymer degradation occurred evidenced by increased brittleness of the scaffolds. This study demonstrates the degradation of PCL following fabrication via MEW and surface treatment to guide the optimization of scaffold development for subsequent applications in tissue engineering and biofabrication.


Asunto(s)
Poliésteres , Andamios del Tejido , Polímeros , Temperatura , Ingeniería de Tejidos
4.
J Digit Imaging ; 34(2): 351-356, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33564999

RESUMEN

Small renal masses are commonly diagnosed with modern medical imaging. Renal tumour volume has been explored as a prognostic tool to help decide when intervention is needed and appears to provide additional prognostic information for smaller tumours compared with tumour diameter. However, the current method of calculating tumour volume in clinical practice uses the ellipsoid equation (π/6 × length × width × height) which is an oversimplified approach. Some research groups trace the contour of the tumour in every image slice which is impractical for clinical use. In this study, we demonstrate a method of using 3D segmentation software and the 3D interpolation method to rapidly calculate renal tumour volume in under a minute. Using this method in 27 patients that underwent radical or partial nephrectomy, we found a 10.07% mean absolute difference compared with the traditional ellipsoid method. Our segmentation volume was closer to the calculated histopathological tumour volume than the traditional method (p = 0.03) with higher Lin's concordance correlation coefficient (0.79 vs 0.72). 3D segmentation has many uses related to 3D printing and modelling and is becoming increasingly common. Calculation of tumour volume is one additional benefit it provides. Further studies on the association between segmented tumour volume and prognosis are needed.


Asunto(s)
Neoplasias Renales , Humanos , Riñón/diagnóstico por imagen , Neoplasias Renales/diagnóstico por imagen , Programas Informáticos , Carga Tumoral
5.
BJU Int ; 125(1): 17-27, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31622020

RESUMEN

Three-dimensional (3D) printing or additive manufacturing is a new technology that has seen rapid development in recent years with decreasing costs. 3D printing allows the creation of customised, finely detailed constructs. Technological improvements, increased printer availability, decreasing costs, improved cell culture techniques, and biomaterials have enabled complex, novel and individualised medical treatments to be developed. Although the long-term goal of printing biocompatible organs has not yet been achieved, major advances have been made utilising 3D printing in biomedical engineering. In this literature review, we discuss the role of 3D printing in relation to urological surgery. We highlight the common printing methods employed and show examples of clinical urological uses. Currently, 3D printing can be used in urology for education of trainees and patients, surgical planning, creation of urological equipment, and bioprinting. In this review, we summarise the current applications of 3D-printing technology in these areas of urology.


Asunto(s)
Bioimpresión , Impresión Tridimensional , Procedimientos Quirúrgicos Urológicos/métodos , Urología/educación , Humanos
6.
Biomed Eng Online ; 19(1): 55, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32611431

RESUMEN

BACKGROUND: Three-dimensional (3D) printing is a promising technology, but the limitations are often poorly understood. We compare different 3D printing methods with conventional machining techniques in manufacturing meatal urethral dilators which were recently removed from the Australian market. METHODS: A prototype dilator was 3D printed vertically orientated on a low-cost fused deposition modelling (FDM) 3D printer in polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS). It was also 3D printed horizontally orientated in ABS on a high-end FDM 3D printer with soluble support material, as well as on an SLS 3D printer in medical nylon. The dilator was also machined in stainless steel using a lathe. All dilators were tested mechanically in a custom rig by hanging calibrated weights from the handle until the dilator snapped. RESULTS: The horizontally printed ABS dilator experienced failure at a greater load than the vertically printed PLA and ABS dilators, respectively (503 g vs 283 g vs 163 g, p < 0.001). The SLS nylon dilator and machined steel dilator did not fail. The steel dilator is the most expensive with a quantity of five at 98 USD each, but this decreases to 30 USD each for a quantity of 1000. In contrast, the cost for the SLS dilator is 33 USD each for five and 27 USD each for 1000. CONCLUSIONS: Low-cost FDM 3D printing is not a replacement for conventional manufacturing. 3D printing is best used for patient-specific parts, prototyping or manufacturing complex parts that have additional functionality that cannot otherwise be achieved.


Asunto(s)
Dilatación/instrumentación , Diseño de Equipo/métodos , Impresión Tridimensional , Uretra/cirugía , Pruebas Mecánicas
7.
Macromol Rapid Commun ; 40(11): e1900019, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30932256

RESUMEN

Additive manufacturing via melt electrowriting (MEW) can create ordered microfiber scaffolds relevant for bone tissue engineering; however, there remain limitations in the adoption of new printing materials, especially in MEW of biomaterials. For example, while promising composite formulations of polycaprolactone with strontium-substituted bioactive glass have been processed into large or disordered fibres, from what is known, biologically-relevant concentrations (>10 wt%) have never been printed into ordered microfibers using MEW. In this study, rheological characterization is used in combination with a predictive mathematical model to optimize biomaterial formulations and MEW conditions required to extrude various PCL and PCL/SrBG biomaterials to create ordered scaffolds. Previously, MEW printing of PCL/SrBG composites with 33 wt% glass required unachievable extrusion pressures. The composite formulation is modified using an evaporable solvent to reduce viscosity 100-fold to fall within the predicted MEW pressure, temperature, and voltage tolerances, which enabled printing. This study reports the first fabrication of reproducible, ordered high-content bioactive glass microfiber scaffolds by applying predictive modeling.


Asunto(s)
Materiales Biocompatibles/química , Vidrio/química , Poliésteres/química , Estroncio/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Viscosidad
8.
Am J Pathol ; 187(9): 1923-1934, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28675805

RESUMEN

Multicentric carpal-tarsal osteolysis; multicentric osteolysis, nodulosis, and arthropathy; and Winchester syndromes, skeletal dysplasias characterized by carpal/tarsal and epiphyseal abnormalities, are caused by mutations in v-maf musculoaponeurotic fibrosarcoma oncogene ortholog B (MAFB), matrix metalloproteinase (MMP) 2, and MMP14, respectively; however, the underlying pathophysiology is unclear. Osteoclast-mediated osteolysis has been regarded as the main mechanism, but does not explain the skeletal distribution. We hypothesized that MAFB, MMP-2, and MMP-14 have integral roles in carpal/tarsal and epiphyseal bone development. Normal neonatal mouse forepaws were imaged by micro-computed tomography and examined histologically. Murine forepaw ossification occurred sequentially. Subarticular regions of endochondral ossification showed morphologic and calcification patterns that were distinct from archetypical physeal endochondral ossification. This suggests that two different forms of endochondral ossification occur. The skeletal sites showing the greatest abnormality in the carpal-tarsal osteolysis syndromes are regions of subarticular ossification. Thus, abnormal bone formation in areas of subarticular ossification may explain the site-specific distribution of the carpal-tarsal osteolysis phenotype. MafB, Mmp-2, and Mmp-14 were expressed widely, and tartrate-resistant acid phosphatase staining notably was absent in the subarticular regions of the cartilage anlagen and entheses at a time point most relevant to the human osteolysis syndromes. Thus, abnormal peri-articular skeletal development and modeling, rather than excessive bone resorption, may be the underlying pathophysiology of these skeletal syndromes.


Asunto(s)
Huesos del Carpo/crecimiento & desarrollo , Placa de Crecimiento/patología , Osteólisis/patología , Animales , Proteínas de Arabidopsis , Huesos del Carpo/diagnóstico por imagen , Huesos del Carpo/metabolismo , Preescolar , Placa de Crecimiento/diagnóstico por imagen , Placa de Crecimiento/metabolismo , Humanos , Liasas Intramoleculares , Factor de Transcripción MafB/metabolismo , Metaloproteinasa 14 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones , Osteogénesis , Osteólisis/diagnóstico por imagen , Osteólisis/metabolismo , Microtomografía por Rayos X
9.
Artif Organs ; 42(5): E43-E54, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29235130

RESUMEN

Implantation of left ventricular assist devices typically requires cardiopulmonary bypass support, which is associated with postoperative complications. A novel suture-less inflow cannula, which can be implanted without bypass, uses mild myocardial compression to seal the interface, however, this may lead to necrosis of the myocardium. To circumvent this issue, a bilayered scaffold has been developed to promote tissue growth at the interface between cannula and myocardium. The bilayered scaffold consists of a silicone base layer, which mimics the seal, and a melt electrospun polycaprolactone scaffold to serve as a tissue integration layer. Biocompatibility of the bilayered scaffolds was assessed by analyzing cell viability, morphology, and metabolic activity of human foreskin fibroblasts cultured on the scaffolds for up to 14 days. There was no evidence of cytotoxicity and the cells adhered readily to the bilayered scaffolds, revealing a cell morphology characteristic of fibroblasts, in contrast to the low cell adhesion observed on flat silicone sheets. The rate of cell proliferation on the bilayered scaffolds rose over the 14-day period and was significantly greater than cells seeded on the silicone sheets. This study suggests that melt electrospun bilayered scaffolds have the potential to support tissue integration of a suture-less inflow cannula for cardiovascular applications. Furthermore, the method of fabrication described here and the application of bilayered scaffolds could also have potential uses in a diverse range of biomedical applications.


Asunto(s)
Cánula , Cateterismo/instrumentación , Corazón Auxiliar , Poliésteres/química , Andamios del Tejido/química , Adhesión Celular , Línea Celular , Supervivencia Celular , Diseño de Equipo , Fibroblastos/citología , Humanos , Silicio/química , Suturas , Ingeniería de Tejidos/métodos
10.
Biotechnol Bioeng ; 114(6): 1129-1139, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27858993

RESUMEN

The ability to treat large tissue defects with customized, patient-specific scaffolds is one of the most exciting applications in the tissue engineering field. While an increasing number of modestly sized tissue engineering solutions are making the transition to clinical use, successfully scaling up to large scaffolds with customized geometry is proving to be a considerable challenge. Managing often conflicting requirements of cell placement, structural integrity, and a hydrodynamic environment supportive of cell culture throughout the entire thickness of the scaffold has driven the continued development of many techniques used in the production, culturing, and characterization of these scaffolds. This review explores a range of technologies and methods relevant to the design and manufacture of large, anatomically accurate tissue-engineered scaffolds with a focus on the interaction of manufactured scaffolds with the dynamic tissue culture fluid environment. Biotechnol. Bioeng. 2017;114: 1129-1139. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Desarrollo Óseo/fisiología , Sustitutos de Huesos/síntesis química , Osteoblastos/fisiología , Osteoblastos/trasplante , Ingeniería de Tejidos/métodos , Andamios del Tejido/tendencias , Animales , Diseño de Equipo , Humanos , Osteoblastos/citología , Osteogénesis/fisiología , Ingeniería de Tejidos/tendencias
12.
Biomed Eng Online ; 15(Suppl 2): 136, 2016 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-28155674

RESUMEN

BACKGROUND: Implantation of a rotary blood pump (RBP) can cause non-physiological flow fields in the left ventricle (LV) which may trigger thrombosis. Different inflow cannula geometry can affect LV flow fields. The aim of this study was to determine the effect of inflow cannula geometry on intraventricular flow under full LV support in a patient specific model. METHODS: Computed tomography angiography imaging of the LV was performed on a RBP candidate to develop a patient-specific model. Five inflow cannulae were evaluated, which were modelled on those used clinically or under development. The inflow cannulae are described as a crown like tip, thin walled tubular tip, large filleted tip, trumpet like tip and an inferiorly flared cannula. Placement of the inflow cannula was at the LV apex with the central axis intersecting the centre of the mitral valve. Full support was simulated by prescribing 5 l/min across the mitral valve. Thrombus risk was evaluated by identifying regions of stagnation. Rate of LV washout was assessed using a volume of fluid model. Relative haemolysis index and blood residence time was calculated using an Eulerian approach. RESULTS: The inferiorly flared inflow cannula had the lowest thrombus risk due to low stagnation volumes. All cannulae had similar rates of LV washout and blood residence time. The crown like tip and thin walled tubular tip resulted in relatively higher blood damage indices within the LV. CONCLUSION: Changes in intraventricular flow due to variances in cannula geometry resulted in different stagnation volumes. Cannula geometry does not appreciably affect LV washout rates and blood residence time. The patient specific, full support computational fluid dynamic model provided a repeatable platform to investigate the effects of inflow cannula geometry on intraventricular flow.


Asunto(s)
Cánula , Ventrículos Cardíacos/fisiopatología , Trombosis/fisiopatología , Simulación por Computador , Insuficiencia Cardíaca/fisiopatología , Hemólisis , Humanos , Válvula Mitral/diagnóstico por imagen , Modelos Cardiovasculares , Riesgo , Resistencia al Corte , Estrés Mecánico , Trombosis/diagnóstico por imagen , Tomografía Computarizada por Rayos X
13.
Biotechnol Bioeng ; 111(7): 1440-51, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24473931

RESUMEN

Tissue engineering focuses on the repair and regeneration of tissues through the use of biodegradable scaffold systems that structurally support regions of injury while recruiting and/or stimulating cell populations to rebuild the target tissue. Within bone tissue engineering, the effects of scaffold architecture on cellular response have not been conclusively characterized in a controlled-density environment. We present a theoretical and practical assessment of the effects of polycaprolactone (PCL) scaffold architectural modifications on mechanical and flow characteristics as well as MC3T3-E1 preosteoblast cellular response in an in vitro static plate and custom-designed perfusion bioreactor model. Four scaffold architectures were contrasted, which varied in inter-layer lay-down angle and offset between layers, while maintaining a structural porosity of 60 ± 5%. We established that as layer angle was decreased (90° vs. 60°) and offset was introduced (0 vs. 0.5 between layers), structural stiffness, yield stress, strength, pore size, and permeability decreased, while computational fluid dynamics-modeled wall shear stress was increased. Most significant effects were noted with layer offset. Seeding efficiencies in static culture were also dramatically increased due to offset (∼ 45% to ∼ 86%), with static culture exhibiting a much higher seeding efficiency than perfusion culture. Scaffold architecture had minimal effect on cell response in static culture. However, architecture influenced osteogenic differentiation in perfusion culture, likely by modifying the microfluidic environment.


Asunto(s)
Reactores Biológicos , Osteoblastos/fisiología , Ingeniería de Tejidos/métodos , Andamios del Tejido , Poliésteres
14.
Sci Data ; 11(1): 555, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816429

RESUMEN

Intracranial aneurysms (IAs) are present in 2-6% of the global population and can be catastrophic upon rupture with a mortality rate of 30-50%. IAs are commonly detected through time-of-flight magnetic resonance angiography (TOF-MRA), however, this data is rarely available for research and training purposes. The provision of imaging resources such as TOF-MRA images is imperative to develop new strategies for IA detection, rupture prediction, and surgical training. To support efforts in addressing data availability bottlenecks, we provide an open-access TOF-MRA dataset comprising 63 patients, of which 24 underwent interval surveillance imaging by TOF-MRA. Patient scans were evaluated by a neuroradiologist, providing aneurysm and vessel segmentations, clinical annotations, 3D models, in addition to 3D Slicer software environments containing all this data for each patient. This dataset is the first to provide interval surveillance imaging for supporting the understanding of IA growth and stability. This dataset will support computational and experimental research into IA dynamics and assist surgical and radiology training in IA treatment.


Asunto(s)
Aneurisma Intracraneal , Angiografía por Resonancia Magnética , Aneurisma Intracraneal/diagnóstico por imagen , Humanos
15.
J Diabetes Sci Technol ; 17(1): 99-106, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35658555

RESUMEN

BACKGROUND: Non-removable knee-high devices are the gold-standard offloading treatments to heal plantar diabetic foot ulcers (DFUs). These devices are underused in practice for a variety of reasons. Recommending these devices for all patients, regardless of their circumstances and preferences influencing their ability to tolerate the devices, does not seem a fruitful approach. PURPOSE: The aim of this article is to explore the potential implications of a more personalized approach to offloading DFUs and suggest avenues for future research and development. METHODS: Non-removable knee-high devices effectively heal plantar DFUs by reducing plantar pressure and shear at the DFU, reducing weight-bearing activity and enforcing high adherence. We propose that future offloading devices should be developed that aim to optimize these mechanisms according to each individual's needs. We suggest three different approaches may be developed to achieve such personalized offloading treatment. First, we suggest modular devices, where different mechanical features (rocker-bottom sole, knee-high cast walls/struts, etc.) can be added or removed from the device to accommodate different patients' needs and the evolving needs of the patient throughout the treatment period. Second, advanced manufacturing techniques and novel materials could be used to personalize the design of their devices, thereby improving common hindrances to their use, such as devices being heavy, bulky, and hot. Third, sensors could be used to provide real-time feedback to patients and clinicians on plantar pressures, shear, weight-bearing activity, and adherence. CONCLUSIONS: By the use of these approaches, we could provide patients with personalized devices to optimize plantar tissue stress, thereby improving clinical outcomes.


Asunto(s)
Diabetes Mellitus , Pie Diabético , Humanos , Pie Diabético/terapia , Cicatrización de Heridas , Presión , Soporte de Peso , Moldes Quirúrgicos , Zapatos
16.
Comput Biol Med ; 162: 107033, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37271110

RESUMEN

Ear prostheses are commonly used for restoring aesthetics to those suffering missing or malformed external ears. Traditional fabrication of these prostheses is labour intensive and requires expert skill from a prosthetist. Advanced manufacturing including 3D scanning, modelling and 3D printing has the potential to improve this process, although more work is required before it is ready for routine clinical use. In this paper, we introduce a parametric modelling technique capable of producing high quality 3D models of the human ear from low-fidelity, frugal, patient scans; significantly reducing time, complexity and cost. Our ear model can be tuned to fit the frugal low-fidelity 3D scan through; (a) manual tuning, or (b) our automated particle filter approach. This potentially enables low-cost smartphone photogrammetry-based 3D scanning for high quality personalised 3D printed ear prosthesis. In comparison to standard photogrammetry, our parametric model improves completeness, from (81 ± 5)% to (87 ± 4)%, with only a modest reduction in accuracy, with root mean square error (RMSE) increasing from (1.0 ± 0.2) mm to (1.5 ± 0.2) mm (relative to metrology rated reference 3D scans, n = 14). Despite this reduction in the RMS accuracy, our parametric model improves the overall quality, realism, and smoothness. Our automated particle filter method differs only modestly compared to manual adjustments. Overall, our parametric ear model can significantly improve quality, smoothness and completeness of 3D models produced from 30-photograph photogrammetry. This enables frugal high-quality 3D ear models to be produced for use in the advanced manufacturing of ear prostheses.


Asunto(s)
Miembros Artificiales , Impresión Tridimensional , Humanos , Cintigrafía
17.
Biomaterials ; 284: 121514, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35413510

RESUMEN

Industrial cell culture processes are inherently expensive, time-consuming, and variable. These limitations have become a critical bottleneck for the industrial translation of human cell and tissue biomanufacturing, as few human cell culture products deliver sufficient benefit, value, and consistency to offset their high manufacturing costs and produce useful clinical or biomedical solutions. Recent advances in biomedical image analysis and computational modelling can enhance the design and operation of high-efficiency tissue biomanufacturing platforms, as well as the high-content characterisation and monitoring of culture performance, to enable bioprocess control, optimisation, and automation. These computational technologies aim to maximize culture outcomes while minimizing variability and process development expense. In this review, we outline current resources and approaches which harness biomedical imaging and image-based computational models to design and operate efficient and robust human tissue biomanufacturing platforms.


Asunto(s)
Técnicas de Cultivo de Célula , Ingeniería de Tejidos , Reactores Biológicos , Humanos
18.
Curr Opin Biotechnol ; 73: 282-289, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34601260

RESUMEN

Prostheses play a critical role in healthcare provision for many patients and encompass aesthetic facial prostheses, prosthetic limbs and prosthetic joints, bones, and other implantable medical devices in musculoskeletal surgery. An increasingly important component in cutting-edge healthcare treatments is the ability to accurately capture patient anatomy in order to guide the manufacture of personalized prostheses. This article examines methods for capturing patient anatomy and discusses the degrees of personalization in medical manufacturing alongside a summary of current trends in scanning technology with a focus on identifying workflows for incorporating personalization into patient-specific products. Over the next decade, with increased harmonization of both personalization and automated prosthetic manufacturing will be the realization of improved patient compliance, satisfaction, and clinical outcomes.


Asunto(s)
Miembros Artificiales , Humanos , Prótesis e Implantes
19.
Adv Healthc Mater ; 11(24): e2200454, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35765715

RESUMEN

Engineered tissues provide an alternative to graft material, circumventing the use of donor tissue such as autografts or allografts and non-physiological synthetic implants. However, their lack of vasculature limits the growth of volumetric tissue more than several millimeters thick which limits their success post-implantation. Perfused bioreactors enhance nutrient mass transport inside lab-grown tissue but remain poorly customizable to support the culture of personalized implants. Here, a multiscale framework of computational fluid dynamics (CFD), additive manufacturing, and a perfusion bioreactor system are presented to engineer personalized volumetric tissue in the laboratory. First, microscale 3D printed scaffold pore geometries are designed and 3D printed to characterize media perfusion through CFD and experimental fluid testing rigs. Then, perfusion bioreactors are custom-designed to combine 3D printed scaffolds with flow-focusing inserts in patient-specific shapes as simulated using macroscale CFD. Finally, these computationally optimized bioreactor-scaffold assemblies are additively manufactured and cultured with pre-osteoblast cells for 7, 20, and 24 days to achieve tissue growth in the shape of human calcaneus bones of 13 mL volume and 1 cm thickness. This framework enables an intelligent model-based design of 3D printed scaffolds and perfusion bioreactors which enhances nutrient transport for long-term volumetric tissue growth in personalized implant shapes. The novel methods described here are readily applicable for use with different cell types, biomaterials, and scaffold microstructures to research therapeutic solutions for a wide range of tissues.


Asunto(s)
Materiales Biocompatibles , Reactores Biológicos , Humanos , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Impresión Tridimensional
20.
Biofabrication ; 14(3)2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35378520

RESUMEN

Tissue biomanufacturing aims to produce lab-grown stem cell grafts and biomimetic drug testing platforms but remains limited in its ability to recapitulate native tissue mechanics. The emerging field of soft robotics aims to emulate dynamic physiological locomotion, representing an ideal approach to recapitulate physiologically complex mechanical stimuli and enhance patient-specific tissue maturation. The kneecap's femoropopliteal artery (FPA) represents a highly flexible tissue across multiple axes during blood flow, walking, standing, and crouching positions, and these complex biomechanics are implicated in the FPA's frequent presentation of peripheral artery disease. We developed a soft pneumatically actuated (SPA) cell culture platform to investigate how patient-specific FPA mechanics affect lab-grown arterial tissues. Silicone hyperelastomers were screened for flexibility and biocompatibility, then additively manufactured into SPAs using a simulation-based design workflow to mimic normal and diseased FPA extensions in radial, angular, and longitudinal dimensions. SPA culture platforms were seeded with mesenchymal stem cells, connected to a pneumatic controller, and provided with 24 h multi-axial exercise schedules to demonstrate the effect of dynamic conditioning on cell alignment, collagen production, and muscle differentiation without additional growth factors. Soft robotic bioreactors are promising platforms for recapitulating patient-, disease-, and lifestyle-specific mechanobiology for understanding disease, treatment simulations, and lab-grown tissue grafts.


Asunto(s)
Robótica , Arterias , Fenómenos Biomecánicos , Biofisica , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA