Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am Nat ; 186(1): E1-E15, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26098351

RESUMEN

Substantial research has addressed adaptation of nonnative biota to novel environments, yet surprisingly little work has integrated population genetic structure and the mechanisms underlying phenotypic differentiation in ecologically important traits. We report on studies of the common milkweed Asclepias syriaca, which was introduced from North America to Europe over the past 400 years and which lacks most of its specialized herbivores in the introduced range. Using 10 populations from each continent grown in a common environment, we identified several growth and defense traits that have diverged, despite low neutral genetic differentiation between continents. We next developed a Bayesian modeling approach to account for relationships between molecular and phenotypic differences, confirming that continental trait differentiation was greater than expected from neutral genetic differentiation. We found evidence that growth-related traits adaptively diverged within and between continents. Inducible defenses triggered by monarch butterfly herbivory were substantially reduced in European populations, and this reduction in inducibility was concordant with altered phytohormonal dynamics, reduced plant growth, and a trade-off with constitutive investment. Freedom from the community of native and specialized herbivores may have favored constitutive over induced defense. Our replicated analysis of plant growth and defense, including phenotypically plastic traits, suggests adaptive evolution following a continental introduction.


Asunto(s)
Adaptación Fisiológica , Asclepias/crecimiento & desarrollo , Asclepias/genética , Evolución Biológica , Herbivoria , Animales , Asclepias/parasitología , Teorema de Bayes , Mariposas Diurnas , Europa (Continente) , Variación Genética , Especies Introducidas , América del Norte , Fenotipo , Desarrollo de la Planta
2.
Ecology ; 103(11): e3803, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35796712

RESUMEN

A central question in invasion biology is whether adaptive trait evolution following species introduction promotes invasiveness. A growing number of common-garden experiments document phenotypic differences between native- and introduced-range plants, suggesting that adaptive evolution in the new range may indeed contribute to the success of invasive plants. However, these studies are often subject to methodological pitfalls, resulting in weak evidence for post-introduction adaptive trait evolution and leaving its role in the invasion process uncertain. In a common-garden glasshouse study, we compared the growth, life-history, and reproductive traits of 35 native- and introduced-range Polygonum cespitosum populations. We used complementary approaches including climate-matching, standardizing parental conditions, selection analysis, and testing for trait-environment relationships to determine whether traits that increase invasiveness adaptively evolved in the species' new range. We found that the majority of introduced-range populations exhibited a novel trait syndrome consisting of a fast-paced life history and concomitant sparse, reduced growth form. Selection analysis confirmed that this trait syndrome led to markedly higher fitness (propagule production) over a limited growing season that was characteristic of regions within the introduced range. Additionally, several growth and reproductive traits showed temperature-based clines consistent with adaptive evolution in the new range. Combined, these results indicate that, subsequent to its introduction to North America over 100 generations ago, P. cespitosum has evolved key traits that maximize propagule production. These changes may in part explain the species' recent transition to invasiveness, illustrating how post-introduction evolution may contribute to the invasion process.


Asunto(s)
Especies Introducidas , Plantas , Fenotipo , Reproducción , América del Norte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA