Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Am Chem Soc ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968420

RESUMEN

Hydrogen sulfide (H2S) is an endogenously produced gasotransmitter involved in many physiological processes that are integral to proper cellular functioning. Due to its profound anti-inflammatory and antioxidant properties, H2S plays important roles in preventing inflammatory skin disorders and improving wound healing. Transdermal H2S delivery is a therapeutically viable option for the management of such disorders. However, current small-molecule H2S donors are not optimally suited for transdermal delivery and typically generate electrophilic byproducts that may lead to undesired toxicity. Here, we demonstrate that H2S release from metal-organic frameworks (MOFs) bearing coordinatively unsaturated metal centers is a promising alternative for controlled transdermal delivery of H2S. Gas sorption measurements and powder X-ray diffraction (PXRD) studies of 11 MOFs support that the Mg-based framework Mg2(dobdc) (dobdc4- = 2,5-dioxidobenzene-1,4-dicarboxylate) is uniquely well-suited for transdermal H2S delivery due to its strong yet reversible binding of H2S, high capacity (14.7 mmol/g at 1 bar and 25 °C), and lack of toxicity. In addition, Rietveld refinement of synchrotron PXRD data from H2S-dosed Mg2(dobdc) supports that the high H2S capacity of this framework arises due to the presence of three distinct binding sites. Last, we demonstrate that transdermal delivery of H2S from Mg2(dobdc) is sustained over a 24 h period through porcine skin. Not only is this significantly longer than sodium sulfide but this represents the first example of controlled transdermal delivery of pure H2S gas. Overall, H2S-loaded Mg2(dobdc) is an easily accessible, solid-state source of H2S, enabling safe storage and transdermal delivery of this therapeutically relevant gas.

2.
J Am Chem Soc ; 146(11): 7487-7497, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38466925

RESUMEN

Upconverting nanoparticles (UCNPs) exhibit unique nonlinear optical properties that can be harnessed in microscopy, sensing, and photonics. However, forming high-resolution nano- and micropatterns of UCNPs with large packing fractions is still challenging. Additionally, there is limited understanding of how nanoparticle patterning chemistries are affected by the particle size. Here, we explore direct patterning chemistries for 6-18 nm Tm3+-, Yb3+/Tm3+-, and Yb3+/Er3+-based UCNPs using ligands that form either new ionic linkages or covalent bonds between UCNPs under ultraviolet (UV), electron-beam (e-beam), and near-infrared (NIR) exposure. We study the effect of UCNP size on these patterning approaches and find that 6 nm UCNPs can be patterned with compact ionic-based ligands. In contrast, patterning larger UCNPs requires long-chain, cross-linkable ligands that provide sufficient interparticle spacing to prevent irreversible aggregation upon film casting. Compared to approaches that use a cross-linkable liquid monomer, our patterning method limits the cross-linking reaction to the ligands bound on UCNPs deposited as a thin film. This highly localized photo-/electron-initiated chemistry enables the fabrication of densely packed UCNP patterns with high resolutions (∼1 µm with UV and NIR exposure; <100 nm with e-beam). Our upconversion NIR lithography approach demonstrates the potential to use inexpensive continuous-wave lasers for high-resolution 2D and 3D lithography of colloidal materials. The deposited UCNP patterns retain their upconverting, avalanching, and photoswitching behaviors, which can be exploited in patterned optical devices for next-generation UCNP applications.

3.
Inorg Chem ; 62(50): 20721-20732, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37590371

RESUMEN

Thorium-227 (227Th) is an α-emitting radionuclide that has shown preclinical and clinical promise for use in targeted α-therapy (TAT), a type of molecular radiopharmaceutical treatment that harnesses high energy α particles to eradicate cancerous lesions. Despite these initial successes, there still exists a need for bifunctional chelators that can stably bind thorium in vivo. Toward this goal, we have prepared two macrocyclic chelators bearing 1,2-hydroxypyridinone groups. Both chelators can be synthesized in less than six steps from readily available starting materials, which is an advantage over currently available platforms. The complex formation constants (log ßmlh) of these ligands with Zr4+ and Th4+, measured by spectrophotometric titrations, are greater than 34 for both chelators, indicating the formation of exceedingly stable complexes. Radiolabeling studies were performed to show that these ligands can bind [227Th]Th4+ at concentrations as low as 10-6 M, and serum stability experiments demonstrate the high kinetic stability of the formed complexes under biological conditions. Identical experiments with zirconium-89 (89Zr), a positron-emitting radioisotope used for positron emission tomography (PET) imaging, demonstrate that these chelators can also effectively bind Zr4+ with high thermodynamic and kinetic stability. Collectively, the data reported herein highlight the suitability of these ligands for use in 89Zr/227Th paired radioimmunotheranostics.


Asunto(s)
Quelantes , Radiofármacos , Torio , Radioisótopos , Circonio , Tomografía de Emisión de Positrones/métodos , Ligandos
4.
Inorg Chem ; 61(43): 17299-17312, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36260092

RESUMEN

The mitochondrial calcium uniporter (MCU) is a transmembrane protein that resides on the inner membrane of the mitochondria and mediates calcium uptake into this organelle. Given the critical role of mitochondrial calcium trafficking in cellular function, inhibitors of this channel have arisen as tools for studying the biological relevance of this process and as potential therapeutic agents. In this study, four new analogues of the previously reported Ru-based MCU inhibitor [ClRu(NH3)4(µ-N)Ru(NH3)4Cl]Cl3 (Ru265) are reported. These compounds, which bear axial carboxylate ligands, are of the general formula [(RCO2)Ru(NH3)4(µ-N)Ru(NH3)4(O2CR)]X3, where X = NO3- or CF3SO3- and R = H (1), CH3 (2), CH2CH3 (3), and (CH2)2CH3 (4). These complexes were fully characterized by IR spectroscopy, NMR spectroscopy, and elemental analysis. X-ray crystal structures of 1 and 3 were obtained, revealing the expected presence of both the linear Ru(µ-N)Ru core and axial formate and propionate ligands. The axial carboxylate ligands of complexes 1-4 are displaced by water in buffered aqueous solution to give the aquated compound Ru265'. The kinetics of these processes were measured by 1H NMR spectroscopy, revealing half-lives that span 5.9-9.9 h at 37 °C. Complex 1 with axial formate ligands underwent aquation approximately twice as fast as the other compounds. In vitro cytotoxicity and mitochondrial membrane potential measurements carried out in HeLa and HEK293T cells demonstrated that none of these four complexes negatively affects cell viability or mitochondrial function. The abilities of 1-4 to inhibit mitochondrial calcium uptake in permeabilized HEK293T cells were assessed and compared to that of Ru265. Fresh solutions of 1-4 are approximately 2-fold less potent than Ru265 with IC50 values in the range of 14.7-19.1 nM. Preincubating 1-4 in aqueous buffers for longer time periods to allow for the aquation reactions to proceed increases their potency of mitochondrial uptake inhibition to match that of Ru265. This result indicates that 1-4 are aquation-activated prodrugs of Ru265'. Finally, 1-4 were shown to inhibit mitochondrial calcium uptake in intact, nonpermeabilized cells, revealing their value as tools and potential therapeutic agents for mitochondrial calcium-related disorders.


Asunto(s)
Calcio , Profármacos , Humanos , Calcio/metabolismo , Formiatos , Células HEK293 , Ligandos
5.
Inorg Chem ; 61(7): 3337-3350, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35137587

RESUMEN

Uranium-230 is an α-emitting radionuclide with favorable properties for use in targeted α-therapy (TAT), a type of nuclear medicine that harnesses α particles to eradicate cancer cells. To successfully implement this radionuclide for TAT, a bifunctional chelator that can stably bind uranium in vivo is required. To address this need, we investigated the acyclic ligands H2dedpa, H2CHXdedpa, H2hox, and H2CHXhox as uranium chelators. The stability constants of these ligands with UO22+ were measured via spectrophotometric titrations, revealing log ßML values that are greater than 18 and 26 for the "pa" and "hox" chelators, respectively, signifying that the resulting complexes are exceedingly stable. In addition, the UO22+ complexes were structurally characterized by NMR spectroscopy and X-ray crystallography. Crystallographic studies reveal that all six donor atoms of the four ligands span the equatorial plane of the UO22+ ion, giving rise to coordinatively saturated complexes that exclude solvent molecules. To further understand the enhanced thermodynamic stabilities of the "hox" chelators over the "pa" chelators, density functional theory (DFT) calculations were employed. The use of the quantum theory of atoms in molecules revealed that the extent of covalency between all four ligands and UO22+ was similar. Analysis of the DFT-computed ligand strain energy suggested that this factor was the major driving force for the higher thermodynamic stability of the "hox" ligands. To assess the suitability of these ligands for use with 230U TAT in vivo, their kinetic stabilities were probed by challenging the UO22+ complexes with the bone model hydroxyapatite (HAP) and human plasma. All four complexes were >95% stable in human plasma for 14 days, whereas in the presence of HAP, only the complexes of H2CHXdedpa and H2hox remained >80% intact over the same period. As a final validation of the suitability of these ligands for radiotherapy applications, the in vivo biodistribution of their UO22+ complexes was determined in mice in comparison to unchelated [UO2(NO3)2]. In contrast to [UO2(NO3)2], which displays significant bone uptake, all four ligand complexes do not accumulate in the skeletal system, indicating that they remain stable in vivo. Collectively, these studies suggest that the equatorial-spanning ligands H2dedpa, H2CHXdedpa, H2hox, and H2CHXhox are highly promising candidates for use in 230U TAT.


Asunto(s)
Quelantes
6.
Inorg Chem ; 60(12): 9199-9211, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34102841

RESUMEN

The radionuclide 213Bi can be applied for targeted α therapy (TAT): a type of nuclear medicine that harnesses α particles to eradicate cancer cells. To use this radionuclide for this application, a bifunctional chelator (BFC) is needed to attach it to a biological targeting vector that can deliver it selectively to cancer cells. Here, we investigated six macrocyclic ligands as potential BFCs, fully characterizing the Bi3+ complexes by NMR spectroscopy, mass spectrometry, and elemental analysis. Solid-state structures of three complexes revealed distorted coordination geometries about the Bi3+ center arising from the stereochemically active 6s2 lone pair. The kinetic properties of the Bi3+ complexes were assessed by challenging them with a 1000-fold excess of the chelating agent diethylenetriaminepentaacetic acid (DTPA). The most kinetically inert complexes contained the most basic pendent donors. Density functional theory (DFT) and quantum theory of atoms in molecules (QTAIM) calculations were employed to investigate this trend, suggesting that the kinetic inertness is not correlated with the extent of the 6s2 lone pair stereochemical activity, but with the extent of covalency between pendent donors. Lastly, radiolabeling studies of 213Bi (30-210 kBq) with three of the most promising ligands showed rapid formation of the radiolabeled complexes at room temperature within 8 min for ligand concentrations as low as 10-7 M, corresponding to radiochemical yields of >80%, thereby demonstrating the promise of this ligand class for use in 213Bi TAT.


Asunto(s)
Bismuto/uso terapéutico , Quelantes/uso terapéutico , Complejos de Coordinación/uso terapéutico , Éteres Corona/uso terapéutico , Neoplasias/tratamiento farmacológico , Radiofármacos/uso terapéutico , Bismuto/química , Quelantes/síntesis química , Quelantes/química , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Éteres Corona/química , Teoría Funcional de la Densidad , Humanos , Cinética , Ligandos , Estructura Molecular , Radiofármacos/síntesis química , Radiofármacos/química
7.
Angew Chem Int Ed Engl ; 60(3): 1588-1592, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33022823

RESUMEN

Hydrogen sulfide (H2 S) is a gaseous molecule that has received attention for its role in biological processes and therapeutic potential in diseases, such as ischemic reperfusion injury. Despite its clinical relevance, delivery of H2 S to biological systems is hampered by its toxicity at high concentrations. Herein, we report the first metal-based H2 S donor that delivers this gas selectively to hypoxic cells. We further show that H2 S release from this compound protects H9c2 rat cardiomyoblasts from an in vitro model of ischemic reperfusion injury. These results validate the utility of redox-activated metal complexes as hypoxia-selective H2 S-releasing agents for use as tools to study the role of this gaseous molecule in complex biological systems.


Asunto(s)
Complejos de Coordinación/química , Sulfuro de Hidrógeno/química , Hipoxia/metabolismo , Rutenio/química , Sulfuros/química , Animales , Oxidación-Reducción , Ratas
8.
Inorg Chem ; 59(22): 16522-16530, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33103417

RESUMEN

Efficiently separating the chemically similar lanthanide ions into elementally pure compositions is one of the greatest scientific challenges of the 21st century. Although extensive research efforts have focused on the development of organic extractants for this purpose, the implementation of aqueous complexants possessing distinct coordination chemistries has scarcely been explored as an approach to enhancing intralanthanide separations. In this study, we investigate the lanthanide coordination chemistry of macrophosphi, a novel analogue of the reverse-size selective expanded macrocycle macropa. Our studies reveal that substitution of the pyridyl-2-carboxylic acid pendent arms of macropa with pyridyl-2-phosphinic acid arms of macrophosphi gives rise to a dramatic enhancement in the ability to discriminate between light lanthanides, reflected by a binding affinity of macrophosphi for La3+ that is over 5 orders of magnitude higher than that for Gd3+. Furthermore, upon implementation of macrophosphi as an aqueous complexant in a biphasic extraction system containing the industrial extractant bis(2-ethylhexyl)phosphoric acid, separation factors of up to 45 were achieved for the Ce/La pair. These results represent a remarkable separation of adjacent lanthanides, demonstrating the significant potential of reverse-size selective aqueous complexants in lanthanide separation schemes.

9.
Inorg Chem ; 59(14): 10285-10303, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32633531

RESUMEN

The established platinum-based drugs form covalent DNA adducts to elicit their cytotoxic response. Although they are widely employed, these agents cause toxic side-effects and are susceptible to cancer-resistance mechanisms. To overcome these limitations, alternative metal complexes containing the rhenium(I) tricarbonyl core have been explored as anticancer agents. Based on a previous study ( Chem. Eur. J. 2019, 25, 9206), a series of highly active tricarbonyl rhenium isonitrile polypyridyl (TRIP) complexes of the general formula fac-[Re(CO)3(NN)(ICN)]+, where NN is a chelating diimine and ICN is an isonitrile ligand, that induce endoplasmic reticulum (ER) stress via activation of the unfolded protein response (UPR) pathway are investigated. A total of 11 of these TRIP complexes were synthesized, modifying both the equatorial polypyridyl and axial isonitrile ligands. Complexes with more electron-donating equatorial ligands were found to have greater anticancer activity, whereas the axial ICN ligands had a smaller effect on their overall potency. All 11 TRIP derivatives trigger a similar phenotype that is characterized by their abilities to induce ER stress and activate the UPR. Lastly, we explored the in vivo efficacy of one of the most potent complexes, fac-[Re(CO)3(dmphen)(ptolICN)]+ (TRIP-1a), where dmphen = 2,9-dimethyl-1,10-phenanthroline and ptolICN = para-tolyl isonitrile, in mice. The 99mTc congener of TRIP-1a was synthesized, and its biodistribution in BALB/c mice was investigated in comparison to the parent Re complex. The results illustrate that both complexes have similar biodistribution patterns, suggesting that 99mTc analogues of these TRIP complexes can be used as diagnostic partner agents. The in vivo antitumor activity of TRIP-1a was then investigated in NSG mice bearing A2780 ovarian cancer xenografts. When administered at a dose of 20 mg/kg twice weekly, this complex was able to inhibit tumor growth and prolong mouse survival by 150% compared to the vehicle control cohort.


Asunto(s)
Antineoplásicos/uso terapéutico , Complejos de Coordinación/uso terapéutico , Sustancias Luminiscentes/uso terapéutico , Nitrilos/uso terapéutico , Animales , Antineoplásicos/síntesis química , Antineoplásicos/farmacocinética , Complejos de Coordinación/síntesis química , Complejos de Coordinación/farmacocinética , Estrés del Retículo Endoplásmico/efectos de los fármacos , Femenino , Células HeLa , Humanos , Ligandos , Sustancias Luminiscentes/síntesis química , Sustancias Luminiscentes/farmacocinética , Ratones Endogámicos BALB C , Nitrilos/síntesis química , Nitrilos/farmacocinética , Renio/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/farmacocinética , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Respuesta de Proteína Desplegada/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Angew Chem Int Ed Engl ; 59(16): 6482-6491, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32039530

RESUMEN

The mitochondrial calcium uniporter (MCU) is the ion channel that mediates Ca2+ uptake in mitochondria. Inhibitors of the MCU are valuable as potential therapeutic agents and tools to study mitochondrial Ca2+ . The best-known inhibitor of the MCU is the ruthenium compound Ru360. Although this compound is effective in permeabilized cells, it does not work in intact biological systems. We have recently reported the synthesis and characterization of Ru265, a complex that selectively inhibits the MCU in intact cells. Here, the physical and biological properties of Ru265 and Ru360 are described in detail. Using atomic absorption spectroscopy and X-ray fluorescence imaging, we show that Ru265 is transported by organic cation transporter 3 (OCT3) and taken up more effectively than Ru360. As an explanation for the poor cell uptake of Ru360, we show that Ru360 is deactivated by biological reductants. These data highlight how structural modifications in metal complexes can have profound effects on their biological activities.


Asunto(s)
Canales de Calcio/química , Calcio/metabolismo , Complejos de Coordinación/química , Mitocondrias/metabolismo , Rutenio/química , Canales de Calcio/metabolismo , Línea Celular , Complejos de Coordinación/metabolismo , Cristalografía por Rayos X , Humanos , Conformación Molecular , Oxidación-Reducción
11.
Chemistry ; 25(39): 9206-9210, 2019 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-31090971

RESUMEN

Complexes of the element Re have recently been shown to possess promising anticancer activity through mechanisms of action that are distinct from the conventional metal-based drug cisplatin. In this study, we report our investigations on the anticancer activity of the complex [Re(CO)3 (dmphen)(p-tol-ICN)]+ (TRIP) in which dmphen=2,9-dimethyl-1,10-phenanthroline and p-tol-ICN=para-tolyl isonitrile. TRIP was synthesized by literature methods and exhaustively characterized. This compound exhibited potent in vitro anticancer activity in a wide variety of cell lines. Flow cytometry and immunostaining experiments indicated that TRIP induces intrinsic apoptosis. Comprehensive biological mechanistic studies demonstrated that this compound triggers the accumulation of misfolded proteins, which causes endoplasmic reticulum (ER) stress, the unfolded protein response, and apoptotic cell death. Furthermore, TRIP induced hyperphosphorylation of eIF2α, translation inhibition, mitochondrial fission, and expression of proapoptotic ATF4 and CHOP. These results establish TRIP as a promising anticancer agent based on its potent cytotoxic activity and ability to induce ER stress.


Asunto(s)
Apoptosis , Complejos de Coordinación/química , Renio/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Complejos de Coordinación/farmacología , Cristalografía por Rayos X , Resistencia a Antineoplásicos/efectos de los fármacos , Factor 2 Eucariótico de Iniciación/metabolismo , Células HEK293 , Humanos , Conformación Molecular , Nitrilos/química , Fosforilación/efectos de los fármacos , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
12.
Inorg Chem ; 58(16): 10483-10500, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31246017

RESUMEN

The f-block elements, which comprise both the lanthanide and actinide series, possess interesting spectroscopic, magnetic, and nuclear properties that make them uniquely suited for a range of biomedical applications. In this Forum Article, we provide a concise overview on the different ways that these elements are employed in medicine, highlighting their dual implementation in both diagnostic and therapeutic applications. A key requirement for the use of these labile metal ions in medicine is a suitable chelating agent that controls their in vivo biodistribution. Toward this goal, we also report our research describing the synthesis and characterization of a rigid 18-membered macrocycle called CHX-macropa, an analogue of the previously reported nonrigid ligand macropa (J. Am. Chem. Soc. 2009, 131, 3331). The lanthanide coordination chemistry of CHX-macropa is explored in detail by pH potentiometry and density functional theory (DFT) calculations. These studies reveal that CHX-macropa exhibits an enhanced thermodynamic selectivity for large over small lanthanides in comparison to its nonrigid analogue macropa. DFT calculations suggest that a key factor in the enhanced selectivity of this ligand for the large f-block ions is its rigid macrocyclic core, which cannot adequately distort to interact effectively with small ions. On the basis of its high affinity for large f-block ions, the design strategies implemented in CHX-macropa may be valuable for applying these elements in the diagnosis or treatment of disease.


Asunto(s)
Antineoplásicos/química , Elementos de la Serie de los Lantanoides/química , Compuestos Macrocíclicos/química , Animales , Teoría Funcional de la Densidad , Humanos , Iones/química , Ligandos , Estructura Molecular , Tamaño de la Partícula , Soluciones , Termodinámica
13.
J Am Chem Soc ; 140(39): 12383-12387, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30230336

RESUMEN

Hydrogen sulfide (H2S) is a biological gasotransmitter that has been employed for the treatment of ischemia-reperfusion injury. Despite its therapeutic value, the implementation of this gaseous molecule for this purpose has required H2S-releasing prodrugs for effective intracellular delivery. The majority of these prodrugs, however, spontaneously release H2S via uncontrolled hydrolysis. Here, we describe a Ru(II)-based H2S-releasing agent that can be activated selectively by red light irradiation. This compound operates in living cells, increasing intracellular H2S concentration only upon irradiation with red light. Furthermore, the red light irradiation of this compound protects H9c2 cardiomyoblasts from an in vitro model of ischemia-reperfusion injury. These results validate the use of red light-activated H2S-releasing agents as valuable tools for studying the biology and therapeutic utility of this gasotransmitter.


Asunto(s)
Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Sulfuro de Hidrógeno/química , Sulfuro de Hidrógeno/farmacología , Rutenio/química , Rutenio/farmacología , Células A549 , Línea Celular , Cristalografía por Rayos X , Humanos , Morfolinas/química , Morfolinas/farmacología , Miocitos Cardíacos/efectos de los fármacos , Compuestos Organotiofosforados/química , Compuestos Organotiofosforados/farmacología , Procesos Fotoquímicos , Profármacos/química , Profármacos/farmacología , Daño por Reperfusión/patología , Daño por Reperfusión/prevención & control
14.
RSC Chem Biol ; 4(1): 84-93, 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36685255

RESUMEN

Dysregulation of mitochondrial calcium uptake mediated by the mitochondrial calcium uniporter (MCU) is implicated in several pathophysiological conditions. Dinuclear ruthenium complexes are effective inhibitors of the MCU and have been leveraged as both tools to study mitochondrial calcium dynamics and potential therapeutic agents. In this study, we report the synthesis and characterization of Os245 ([Os2(µ-N)(NH3)8Cl2]3+) which is the osmium-containing analogue of our previously reported ruthenium-based inhibitor Ru265. This complex and its aqua-capped analogue Os245' ([Os2(µ-N)(NH3)8(OH2)2]5+) are both effective inhibitors of the MCU in permeabilized and intact cells. In comparison to the ruthenium-based inhibitor Ru265 (k obs = 4.92 × 10-3 s-1), the axial ligand exchange kinetics of Os245 are two orders of magnitude slower (k obs = 1.63 × 10-5 s-1) at 37 °C. The MCU-inhibitory properties of Os245 and Os245' are different (Os245 IC50 for MCU inhibition = 103 nM; Os245' IC50 for MCU inhibition = 2.3 nM), indicating that the axial ligands play an important role in their interactions with this channel. We further show that inhibition of the MCU by these complexes protects primary cortical neurons against lethal oxygen-glucose deprivation. When administered in vivo to mice (10 mg kg-1), Os245 and Os245' induce seizure-like behaviors in a manner similar to the ruthenium-based inhibitors. However, the onset of these seizures is delayed, a possible consequence of the slower ligand substitution kinetics for these osmium complexes. These findings support previous studies that demonstrate inhibition of the MCU is a promising therapeutic strategy for the treatment of ischemic stroke, but also highlight the need for improved drug delivery strategies to mitigate the pro-convulsant effects of this class of complexes before they can be implemented as therapeutic agents. Furthermore, the slower ligand substitution kinetics of the osmium analogues may afford new strategies for the development and modification of this class of MCU inhibitors.

15.
RSC Chem Biol ; 4(8): 587-591, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37547455

RESUMEN

The mammalian protein siderocalin binds bacterial siderophores and their iron complexes through cation-π and electrostatic interactions, but also displays high affinity for hydroxypyridinone complexes of trivalent lanthanides and actinides. In order to circumvent synthetic challenges, the use of siderocalin-antibody fusion proteins is explored herein as an alternative targeting approach for precision delivery of trivalent radiometals. We demonstrate the viability of this approach in vivo, using the theranostic pair 90Y (ß-, t1/2 = 64 h)/86Y (ß+, t1/2 = 14.7 h) in a SKOV-3 xenograft mouse model. Ligand radiolabeling with octadentate hydroxypyridinonate 3,4,3-LI(1,2-HOPO) and subsequent protein binding were achieved at room temperature. The results reported here suggest that the rapid non-covalent binding interaction between siderocalin fusion proteins and the negatively charged Y(iii)-3,4,3-LI(1,2-HOPO) complexes could enable purification-free, cold-kit labeling strategies for the application of therapeutically relevant radiometals in the clinic.

16.
Chem Commun (Camb) ; 57(50): 6161-6164, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34042919

RESUMEN

We report our investigation into the MCU-inhibitory activity of Co3+ complexes in comparison to Ru265. These compounds reversibly inhibit the MCU with nanomolar potency. Mutagenesis studies and molecular docking simulations suggest that the complexes operate through interactions with the DIME motif of the MCU pore.


Asunto(s)
Aminas/farmacología , Canales de Calcio/metabolismo , Cobalto/farmacología , Complejos de Coordinación/farmacología , Aminas/química , Cobalto/química , Complejos de Coordinación/química , Células HEK293 , Células HeLa , Humanos , Conformación Molecular , Simulación del Acoplamiento Molecular
17.
Chem Commun (Camb) ; 57(85): 11189-11192, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34622255

RESUMEN

The photophysical and photochemical properties of two Pt(IV)Re(I) conjugates were studied via both experimental and computational methods. Both conjugates exhibit modest photocytotoxicity against ovarian cancer cells. X-ray fluorescence microscopy showed that Pt and Re colocalize in cells whether they had been irradiated or not. This work demonstrates the potential of photoactivated multilimetallic agents for combating cancer.


Asunto(s)
Antineoplásicos/química , Complejos de Coordinación/química , Neoplasias Ováricas/radioterapia , Platino (Metal)/química , Renio/química , Antineoplásicos/farmacología , Apoptosis , Permeabilidad de la Membrana Celular , Biología Computacional , Complejos de Coordinación/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Células HeLa , Humanos , Luz , Imagen Óptica , Fotoquimioterapia/métodos , Espectrometría por Rayos X
18.
Chem Sci ; 12(27): 9442-9451, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34349918

RESUMEN

Luminescent lanthanides possess ideal properties for biological imaging, including long luminescent lifetimes and emission within the optical window. Here, we report a novel approach to responsive luminescent Tb(iii) probes that involves direct modulation of the antenna excited triplet state energy. If the triplet energy lies too close to the 5D4 Tb(iii) excited state (20 500 cm-1), energy transfer to 5D4 competes with back energy transfer processes and limits lanthanide-based emission. To validate this approach, a series of pyridyl-functionalized, macrocyclic lanthanide complexes were designed, and the corresponding lowest energy triplet states were calculated using density functional theory (DFT). Subsequently, three novel constructs L3 (nitro-pyridyl), L4 (amino-pyridyl) and L5 (fluoro-pyridyl) were synthesized. Photophysical characterization of the corresponding Gd(iii) complexes revealed antenna triplet energies between 25 800 and 30 400 cm-1 and a 500-fold increase in quantum yield upon conversion of Tb(L3) to Tb(L4) using the biologically relevant analyte H2S. The corresponding turn-on reaction can be monitored using conventional, small-animal optical imaging equipment in presence of a Cherenkov radiation emitting isotope as an in situ excitation source, demonstrating that antenna triplet state energy modulation represents a viable approach to biocompatible, Tb-based optical turn-on probes.

19.
Chem Sci ; 12(10): 3733-3742, 2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-34163647

RESUMEN

Targeted alpha therapy is an emerging strategy for the treatment of disseminated cancer. [223Ra]RaCl2 is the only clinically approved alpha particle-emitting drug, and it is used to treat castrate-resistant prostate cancer bone metastases, to which [223Ra]Ra2+ localizes. To specifically direct [223Ra]Ra2+ to non-osseous disease sites, chelation and conjugation to a cancer-targeting moiety is necessary. Although previous efforts to stably chelate [223Ra]Ra2+ for this purpose have had limited success, here we report a biologically stable radiocomplex with the 18-membered macrocyclic chelator macropa. Quantitative labeling of macropa with [223Ra]Ra2+ was accomplished within 5 min at room temperature with a radiolabeling efficiency of >95%, representing a significant advancement over conventional chelators such as DOTA and EDTA, which were unable to completely complex [223Ra]Ra2+ under these conditions. [223Ra][Ra(macropa)] was highly stable in human serum and exhibited dramatically reduced bone and spleen uptake in mice in comparison to bone-targeted [223Ra]RaCl2, signifying that [223Ra][Ra(macropa)] remains intact in vivo. Upon conjugation of macropa to a single amino acid ß-alanine as well as to the prostate-specific membrane antigen-targeting peptide DUPA, both constructs retained high affinity for 223Ra, complexing >95% of Ra2+ in solution. Furthermore, [223Ra][Ra(macropa-ß-alanine)] was rapidly cleared from mice and showed low 223Ra bone absorption, indicating that this conjugate is stable under biological conditions. Unexpectedly, this stability was lost upon conjugation of macropa to DUPA, which suggests a role of targeting vectors in complex stability in vivo for this system. Nonetheless, our successful demonstration of efficient radiolabeling of the ß-alanine conjugate with 223Ra and its subsequent stability in vivo establishes for the first time the possibility of delivering [223Ra]Ra2+ to metastases outside of the bone using functionalized chelators, marking a significant expansion of the therapeutic utility of this radiometal in the clinic.

20.
Chem Sci ; 12(22): 7848-7857, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-34168838

RESUMEN

Hydrogen sulfide (H2S) is an endogenous gasotransmitter with potential therapeutic value for treating a range of disorders, such as ischemia-reperfusion injury resulting from a myocardial infarction or stroke. However, the medicinal delivery of H2S is hindered by its corrosive and toxic nature. In addition, small molecule H2S donors often generate other reactive and sulfur-containing species upon H2S release, leading to unwanted side effects. Here, we demonstrate that H2S release from biocompatible porous solids, namely metal-organic frameworks (MOFs), is a promising alternative strategy for H2S delivery under physiologically relevant conditions. In particular, through gas adsorption measurements and density functional theory calculations we establish that H2S binds strongly and reversibly within the tetrahedral pockets of the fumaric acid-derived framework MOF-801 and the mesaconic acid-derived framework Zr-mes, as well as the new itaconic acid-derived framework CORN-MOF-2. These features make all three frameworks among the best materials identified to date for the capture, storage, and delivery of H2S. In addition, these frameworks are non-toxic to HeLa cells and capable of releasing H2S under aqueous conditions, as confirmed by fluorescence assays. Last, a cellular ischemia-reperfusion injury model using H9c2 rat cardiomyoblast cells corroborates that H2S-loaded MOF-801 is capable of mitigating hypoxia-reoxygenation injury, likely due to the release of H2S. Overall, our findings suggest that H2S-loaded MOFs represent a new family of easily-handled solid sources of H2S that merit further investigation as therapeutic agents. In addition, our findings add Zr-mes and CORN-MOF-2 to the growing lexicon of biocompatible MOFs suitable for drug delivery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA