Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 109(3): E111-8, 2012 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-22247290

RESUMEN

Malaria, caused by Plasmodium sp, results in almost one million deaths and over 200 million new infections annually. The World Health Organization has recommended that artemisinin-based combination therapies be used for treatment of malaria. Artemisinin is a sesquiterpene lactone isolated from the plant Artemisia annua. However, the supply and price of artemisinin fluctuate greatly, and an alternative production method would be valuable to increase availability. We describe progress toward the goal of developing a supply of semisynthetic artemisinin based on production of the artemisinin precursor amorpha-4,11-diene by fermentation from engineered Saccharomyces cerevisiae, and its chemical conversion to dihydroartemisinic acid, which can be subsequently converted to artemisinin. Previous efforts to produce artemisinin precursors used S. cerevisiae S288C overexpressing selected genes of the mevalonate pathway [Ro et al. (2006) Nature 440:940-943]. We have now overexpressed every enzyme of the mevalonate pathway to ERG20 in S. cerevisiae CEN.PK2, and compared production to CEN.PK2 engineered identically to the previously engineered S288C strain. Overexpressing every enzyme of the mevalonate pathway doubled artemisinic acid production, however, amorpha-4,11-diene production was 10-fold higher than artemisinic acid. We therefore focused on amorpha-4,11-diene production. Development of fermentation processes for the reengineered CEN.PK2 amorpha-4,11-diene strain led to production of > 40 g/L product. A chemical process was developed to convert amorpha-4,11-diene to dihydroartemisinic acid, which could subsequently be converted to artemisinin. The strains and procedures described represent a complete process for production of semisynthetic artemisinin.


Asunto(s)
Antimaláricos/metabolismo , Artemisininas/metabolismo , Saccharomyces cerevisiae/metabolismo , Sesquiterpenos/metabolismo , Antimaláricos/química , Artemisininas/química , Técnicas de Cultivo Celular por Lotes , Codón/genética , Etanol/metabolismo , Fermentación , Galactosa/metabolismo , Genes Fúngicos/genética , Genotipo , Glucosa/metabolismo , Sesquiterpenos Policíclicos , Saccharomyces cerevisiae/genética , Sesquiterpenos/química
2.
Org Process Res Dev ; 27(12): 2317-2328, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38524776

RESUMEN

Emulsions of the triterpene squalene ((6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene, CAS 111-02-4) have been used as adjuvants in influenza vaccines since the 1990s. Traditionally sourced from shark liver oil, the overfishing of sharks and concomitant reduction in the oceanic shark population raises sustainability issues for vaccine adjuvant grade squalene. We report a semisynthetic route to squalene meeting current pharmacopeial specifications for use in vaccines that leverages the ready availability of trans-ß-farnesene ((6E)-7,11-dimethyl-3-methylene-1,6,10-dodecatriene, CAS 18794-84-8), manufactured from sustainable sugarcane via a yeast fermentation process. The scalability of the proposed route was verified by a kilo-scale GMP synthesis. We also report data demonstrating the synthesized semi-synthetic squalene's physical stability and biological activity when used in a vaccine adjuvant formulation.

3.
ACS Chem Biol ; 4(4): 261-7, 2009 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-19271725

RESUMEN

Production of fine chemicals from heterologous pathways in microbial hosts is frequently hindered by insufficient knowledge of the native metabolic pathway and its cognate enzymes; often the pathway is unresolved, and the enzymes lack detailed characterization. An alternative paradigm to using native pathways is de novo pathway design using well-characterized, substrate-promiscuous enzymes. We demonstrate this concept using P450(BM3) from Bacillus megaterium. Using a computer model, we illustrate how key P450(BM3) active site mutations enable binding of the non-native substrate amorphadiene. Incorporating these mutations into P450(BM3) enabled the selective oxidation of amorphadiene artemisinic-11S,12-epoxide, at titers of 250 mg L(-1) in E. coli. We also demonstrate high-yielding, selective transformations to dihydroartemisinic acid, the immediate precursor to the high-value antimalarial drug artemisinin.


Asunto(s)
Artemisininas/metabolismo , Bacillus megaterium/enzimología , Proteínas Bacterianas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , NADPH-Ferrihemoproteína Reductasa/metabolismo , Ingeniería de Proteínas , Algoritmos , Artemisininas/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominio Catalítico , Simulación por Computador , Cristalografía por Rayos X , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/genética , Modelos Moleculares , Conformación Molecular , Mutación , NADPH-Ferrihemoproteína Reductasa/química , NADPH-Ferrihemoproteína Reductasa/genética , Oxidación-Reducción , Sesquiterpenos Policíclicos , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Estereoisomerismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA