Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 619(7969): 338-347, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37380775

RESUMEN

Spillover events of avian influenza A viruses (IAVs) to humans could represent the first step in a future pandemic1. Several factors that limit the transmission and replication of avian IAVs in mammals have been identified. There are several gaps in our understanding to predict which virus lineages are more likely to cross the species barrier and cause disease in humans1. Here, we identified human BTN3A3 (butyrophilin subfamily 3 member A3)2 as a potent inhibitor of avian IAVs but not human IAVs. We determined that BTN3A3 is expressed in human airways and its antiviral activity evolved in primates. We show that BTN3A3 restriction acts primarily at the early stages of the virus life cycle by inhibiting avian IAV RNA replication. We identified residue 313 in the viral nucleoprotein (NP) as the genetic determinant of BTN3A3 sensitivity (313F or, rarely, 313L in avian viruses) or evasion (313Y or 313V in human viruses). However, avian IAV serotypes, such as H7 and H9, that spilled over into humans also evade BTN3A3 restriction. In these cases, BTN3A3 evasion is due to substitutions (N, H or Q) in NP residue 52 that is adjacent to residue 313 in the NP structure3. Thus, sensitivity or resistance to BTN3A3 is another factor to consider in the risk assessment of the zoonotic potential of avian influenza viruses.


Asunto(s)
Aves , Interacciones Microbiota-Huesped , Virus de la Influenza A , Gripe Aviar , Gripe Humana , Zoonosis Virales , Animales , Humanos , Aves/virología , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Virus de la Influenza A/crecimiento & desarrollo , Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/transmisión , Gripe Aviar/virología , Gripe Humana/prevención & control , Gripe Humana/transmisión , Gripe Humana/virología , Primates , Sistema Respiratorio/metabolismo , Sistema Respiratorio/virología , Medición de Riesgo , Zoonosis Virales/prevención & control , Zoonosis Virales/transmisión , Zoonosis Virales/virología , Replicación Viral
2.
Gene Ther ; 31(7-8): 400-412, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38678160

RESUMEN

Pseudomonas aeruginosa poses a significant threat to immunocompromised individuals and those with cystic fibrosis. Treatment relies on antibiotics, but persistent infections occur due to intrinsic and acquired resistance of P. aeruginosa towards multiple classes of antibiotics. To date, there are no licensed vaccines for this pathogen, prompting the urgent need for novel treatment approaches to combat P. aeruginosa infection and persistence. Here we validated AAV vectored immunoprophylaxis as a strategy to generate long-term plasma and mucosal expression of highly protective monoclonal antibodies (mAbs) targeting the exopolysaccharide Psl (Cam-003) and the PcrV (V2L2MD) component of the type-III secretion system injectosome either as single mAbs or together as a bispecific mAb (MEDI3902) in a mouse model. When administered intramuscularly, AAV-αPcrV, AAV-αPsl, and AAV-MEDI3902 significantly protected mice challenged intranasally with a lethal dose of P. aeruginosa strains PAO1 and PA14 and reduced bacterial burden and dissemination to other organs. While all AAV-mAbs provided protection, AAV-αPcrV and AAV-MEDI3902 provided 100% and 87.5% protection from a lethal challenge with 4.47 × 107 CFU PAO1 and 87.5% and 75% protection from a lethal challenge with 3 × 107 CFU PA14, respectively. Serum concentrations of MEDI3902 were ~10× lower than that of αPcrV, but mice treated with this vector showed a greater reduction in bacterial dissemination to the liver, lung, spleen, and blood compared to other AAV-mAbs. These results support further investigation into the use of AAV vectored immunoprophylaxis to prevent and treat P. aeruginosa infections and other bacterial pathogens of public health concern for which current treatment strategies are limited.


Asunto(s)
Anticuerpos Monoclonales , Dependovirus , Vectores Genéticos , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Animales , Dependovirus/genética , Dependovirus/inmunología , Pseudomonas aeruginosa/inmunología , Pseudomonas aeruginosa/genética , Ratones , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Infecciones por Pseudomonas/prevención & control , Infecciones por Pseudomonas/inmunología , Infecciones por Pseudomonas/terapia , Anticuerpos Monoclonales/inmunología , Anticuerpos Biespecíficos , Femenino , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/genética , Neumonía Bacteriana/prevención & control , Neumonía Bacteriana/terapia , Neumonía Bacteriana/inmunología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Humanos , Toxinas Bacterianas , Proteínas Citotóxicas Formadoras de Poros
3.
BMC Biotechnol ; 24(1): 22, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664752

RESUMEN

BACKGROUND: The advancement of AAV vectors into clinical testing has accelerated rapidly over the past two decades. While many of the AAV vectors being utilized in clinical trials are derived from natural serotypes, engineered serotypes are progressing toward clinical translation due to their enhanced tissue tropism and immune evasive properties. However, novel AAV vectors require formulation and stability testing to determine optimal storage conditions prior to their use in a clinical setting. RESULTS: Here, we evaluated the thermal stability of AAV6.2FF, a rationally engineered capsid with strong tropism for lung and muscle, in two different buffer formulations; phosphate buffered saline (PBS), or PBS supplemented with 0.001% non-ionic surfactant Pluronic F68 (PF-68). Aliquots of AAV6.2FF vector encoding the firefly luciferase reporter gene (AAV6.2FF-ffLuc) were incubated at temperatures ranging from -20°C to 55°C for varying periods of time and the impact on infectivity and particle integrity evaluated. Additionally, the impact of several rounds of freeze-thaw treatments on the infectivity of AAV6.2FF was investigated. Vector infectivity was measured by quantifying firefly luciferase expression in HEK 293 cells and AAV particle integrity was measured by qPCR quantification of encapsidated viral DNA. CONCLUSIONS: Our data demonstrate that formulating AAV6.2FF in PBS containing 0.001% PF-68 leads to increased stability and particle integrity at temperatures between -20℃ to 21℃ and protection against the destructive effects of freeze-thaw. Finally, AAV6.2FF-GFP formulated in PBS supplemented with 0.001% PF-68 displayed higher transduction efficiency in vivo in murine lung epithelial cells following intranasal administration than vector buffered in PBS alone further demonstrating the beneficial properties of PF-68.


Asunto(s)
Dependovirus , Vectores Genéticos , Poloxámero , Animales , Humanos , Células HEK293 , Poloxámero/farmacología , Poloxámero/química , Ratones , Dependovirus/genética , Vectores Genéticos/genética , Luciferasas de Luciérnaga/genética , Luciferasas de Luciérnaga/metabolismo , Temperatura , Genes Reporteros
4.
J Immunol ; 209(1): 118-127, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35750334

RESUMEN

Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have demonstrated strong immunogenicity and protection against severe disease, concerns about the duration and breadth of these responses remain. In this study, we show that codelivery of plasmid-encoded adenosine deaminase-1 (pADA) with SARS-CoV-2 spike glycoprotein DNA enhances immune memory and durability in vivo. Coimmunized mice displayed increased spike-specific IgG of higher affinity and neutralizing capacity as compared with plasmid-encoded spike-only-immunized animals. Importantly, pADA significantly improved the longevity of these enhanced responses in vivo. This coincided with durable increases in frequencies of plasmablasts, receptor-binding domain-specific memory B cells, and SARS-CoV-2-specific T follicular helper cells. Increased spike-specific T cell polyfunctionality was also observed. Notably, animals coimmunized with pADA had significantly reduced viral loads compared with their nonadjuvanted counterparts in a SARS-CoV-2 infection model. These data suggest that pADA enhances immune memory and durability and supports further translational studies.


Asunto(s)
COVID-19 , Vacunas Virales , Adenosina Desaminasa/genética , Adyuvantes Inmunológicos , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Ratones , SARS-CoV-2
5.
Mol Ther ; 31(12): 3457-3477, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37805711

RESUMEN

Surfactant protein B (SP-B) deficiency is a rare genetic disease that causes fatal respiratory failure within the first year of life. Currently, the only corrective treatment is lung transplantation. Here, we co-transduced the murine lung with adeno-associated virus 6.2FF (AAV6.2FF) vectors encoding a SaCas9-guide RNA nuclease or donor template to mediate insertion of promoterless reporter genes or the (murine) Sftpb gene in frame with the endogenous surfactant protein C (SP-C) gene, without disrupting SP-C expression. Intranasal administration of 3 × 1011 vg donor template and 1 × 1011 vg nuclease consistently edited approximately 6% of lung epithelial cells. Frequency of gene insertion increased in a dose-dependent manner, reaching 20%-25% editing efficiency with the highest donor template and nuclease doses tested. We next evaluated whether this promoterless gene editing platform could extend survival in the conditional SP-B knockout mouse model. Administration of 1 × 1012 vg SP-B-donor template and 5 × 1011 vg nuclease significantly extended median survival (p = 0.0034) from 5 days in the untreated off doxycycline group to 16 days in the donor AAV and nuclease group, with one gene-edited mouse living 243 days off doxycycline. This AAV6.2FF-based gene editing platform has the potential to correct SP-B deficiency, as well as other disorders of alveolar type II cells.


Asunto(s)
Doxiciclina , Edición Génica , Ratones , Animales , Dependovirus/genética , Vectores Genéticos/genética , ARN Guía de Sistemas CRISPR-Cas , Pulmón/metabolismo , Tensoactivos/metabolismo , Sistemas CRISPR-Cas
6.
J Infect Dis ; 228(Suppl 7): S682-S690, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37638865

RESUMEN

Although there are no approved countermeasures available to prevent or treat disease caused by Marburg virus (MARV), potently neutralizing monoclonal antibodies (mAbs) derived from B cells of human survivors have been identified. One such mAb, MR191, has been shown to provide complete protection against MARV in nonhuman primates. We previously demonstrated that prophylactic administration of an adeno-associated virus (AAV) expressing MR191 protected mice from MARV. Here, we modified the AAV-MR191 coding sequence to enhance efficacy and reevaluated protection in a guinea pig model. Remarkably, 4 different variants of AAV-MR191 provided complete protection against MARV, despite administration 90 days prior to challenge. Based on superior expression kinetics, AAV-MR191-io2, was selected for evaluation in a dose-reduction experiment. The highest dose provided 100% protection, while a lower dose provided ∼88% protection. These data confirm the efficacy of AAV-mediated expression of MR191 and support the further development of this promising MARV countermeasure.


Asunto(s)
Enfermedad del Virus de Marburg , Marburgvirus , Humanos , Cobayas , Animales , Ratones , Linfocitos B , Anticuerpos Neutralizantes
7.
Gene Ther ; 30(5): 455-462, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-33608675

RESUMEN

Clostridium difficile is the leading cause of antibiotic-associated nosocomial diarrhea in the developed world. When the host-associated colon microbiome is disrupted by the ingestion of antibiotics, C. difficile spores can germinate, resulting in infection. C. difficile secretes enterotoxin A (TcdA) and cytotoxin B (TcdB) that are responsible for disease pathology. Treatment options are limited as the bacterium demonstrates resistance to many antibiotics, and even with antibacterial therapies, recurrences of C. difficile are common. Actotoxumab and bezlotoxumab are human monoclonal antibodies that bind and neutralize TcdA and TcdB, respectively. In 2016, the US food and drug administration (FDA) approved bezlotoxumab for use in the prevention of C. difficile infection recurrence. To ensure the long-term expression of antibodies, gene therapy can be used. Here, adeno-associated virus (AAV)6.2FF, a novel triple mutant of AAV6, was engineered to express either actotoxumab or bezlotoxumab in mice and hamsters. Both antibodies expressed at greater than 90 µg/mL in the serum and were detected at mucosal surfaces in both models. Hundred percent of mice given AAV6.2FF-actoxumab survived a lethal dose of TcdA. This proof of concept study demonstrates that AAV-mediated expression of C. difficile toxin antibodies is a viable approach for the prevention of recurrent C. difficile infections.


Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Infecciones por Clostridium , Humanos , Animales , Ratones , Toxinas Bacterianas/genética , Anticuerpos Neutralizantes , Infecciones por Clostridium/prevención & control , Infecciones por Clostridium/tratamiento farmacológico , Anticuerpos Monoclonales/uso terapéutico , Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , Proteínas Bacterianas/uso terapéutico
8.
Gene Ther ; 30(3-4): 236-244, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-33028973

RESUMEN

Naturally occurring adeno-associated virus (AAV) serotypes that bind to ligands such as AVB sepharose or heparin can be purified by affinity chromatography, which is a more efficient and scalable method than gradient ultracentrifugation. Wild-type AAV8 does not bind effectively to either of these molecules, which constitutes a barrier to using this vector when a high throughput design is required. Previously, AAV8 was engineered to contain a SPAKFA amino acid sequence to facilitate purification using AVB sepharose resin; however, in vivo studies were not conducted to examine whether these capsid mutations altered the transduction profile. To address this gap in knowledge, a mutant AAV8 capsid was engineered to bind to AVB sepharose and heparan sulfate (AAV8-AVB-HS), which efficiently bound to both affinity columns, resulting in elution yields of >80% of the total vector loaded compared to <5% for wild-type AAV8. However, in vivo comparison by intramuscular, intravenous, and intraperitoneal vector administration demonstrated a significant decrease in AAV8-AVB-HS transduction efficiency without alteration of the transduction profile. Therefore, although it is possible to engineer AAV capsids to bind various affinity ligands, the consequences associated with mutating surface exposed residues have the potential to negatively impact other vector characteristics including in vivo potency and production yield. This study demonstrates the importance of evaluating all aspects of vector performance when engineering AAV capsids.


Asunto(s)
Cápside , Heparina , Cápside/metabolismo , Sefarosa/análisis , Sefarosa/metabolismo , Transducción Genética , Heparina/análisis , Heparina/metabolismo , Vectores Genéticos/genética , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Dependovirus/genética
9.
Gene Ther ; 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732618

RESUMEN

Respiratory syncytial virus (RSV) causes acute lower respiratory tract infections, with potential lower respiratory tract infections, which can be particularly problematic in infants and the elderly. There are no approved vaccines for RSV. The current standard of care for high-risk individuals is monthly administration of palivizumab, a humanized murine monoclonal antibody (mAb) targeting the RSV fusion protein. Adeno-associated virus (AAV)-mediated expression of mAbs has previously led to sustained expression of therapeutic concentrations of mAbs in several animal models, representing an alternative to repetitive passive administration. Intramuscular (IM) administration of AAV6.2FF expressing RSV antibodies, palivizumab or hRSV90, resulted in high concentrations of human (h)IgG1 mAbs in the serum and at various mucosal surfaces, while intranasal administration limited hIgG expression to the respiratory tract. IM administration of AAV6.2FF-hRSV90 or AAV6.2FF-palivizumab in a murine model provided sterilizing immunity against challenge with RSV A2. Evidence of maternal passive transfer of vectorized hRSV90 was detected in both murine and ovine models, with circulating mAbs providing sterilizing immunity in mouse progeny. Finally, addition of a "kill switch" comprised of LoxP sites flanking the mAb genes resulted in diminished serum hIgG after AAV-DJ-mediated delivery of Cre recombinase to the same muscle group that was originally transduced with the AAV-mAb vector. The ability of this AAV-mAb system to mediate robust, sustained mAb expression for maternal transfer to progeny in murine and ovine models emphasizes the potential of this platform for use as an alternative prophylactic vaccine for protection against neonatal infections, particularly in high-risk infants.

10.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36674412

RESUMEN

Neutrophils have conflicting roles in the context of cancers, where they have been associated with contributing to both anti-tumor and pro-tumor responses. Their functional heterogenicity is plastic and can be manipulated by environmental stimuli, which has fueled an area of research investigating therapeutic strategies targeting neutrophils. Dendritic cell (DC)-based cancer vaccination is an immunotherapy that has exhibited clinical promise but has shown limited clinical efficacy. Enhancing our understanding of the communications occurring during DC cancer vaccination can uncover opportunities for enhancing the DC vaccine platform. There have been observed communications between neutrophils and DCs during natural immune responses. However, their crosstalk has been poorly studied in the context of DC vaccination. Here, we review the dual functionality of neutrophils in the context of cancers, describe the crosstalk between neutrophils and DCs during immune responses, and discuss their implications in DC cancer vaccination. This discussion will focus on how neutrophil extracellular traps can influence immune responses in the tumor microenvironment and what roles they may play in promoting or hindering DC vaccine-induced anti-tumor efficacy.


Asunto(s)
Vacunas contra el Cáncer , Trampas Extracelulares , Neoplasias Hematológicas , Neoplasias , Sarcoma , Humanos , Neutrófilos , Neoplasias/patología , Células Dendríticas , Vacunación , Microambiente Tumoral
11.
Gene Ther ; 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050451

RESUMEN

Vectored monoclonal antibody (mAb) expression mediated by adeno-associated virus (AAV) gene delivery leads to sustained therapeutic mAb expression and protection against a wide range of infectious diseases in both small and large animal models, including nonhuman primates. Using our rationally engineered AAV6 triple mutant capsid, termed AAV6.2FF, we demonstrate rapid and robust expression of two potent human antibodies against Marburg virus, MR78 and MR191, following intramuscular (IM) administration. IM injection of mice with 1 × 1011 vector genomes (vg) of AAV6.2FF-MR78 and AAV6.2FF-MR191 resulted in serum concentrations of approximately 141 µg/mL and 195 µg/mL of human IgG, respectively, within the first four weeks. Mice receiving 1 × 1011 vg (high) and 1 × 1010 vg (medium) doses of AAV6.2FF-MR191 were completely protected against lethal Marburg virus challenge. No sex-based differences in serum human IgG concentrations were observed; however, administering the AAV-mAb over multiple injection sites significantly increased serum human IgG concentrations. IM administration of three two-week-old lambs with 5 × 1012 vg/kg of AAV6.2FF-MR191 resulted in serum human IgG expression that was sustained for more than 460 days, concomitant with low levels of anti-capsid and anti-drug antibodies. AAV-mAb expression is a viable method for prolonging the therapeutic effect of recombinant mAbs and represents a potential alternative "vaccine" strategy for those with compromised immune systems or in possible outbreak response scenarios.

12.
Gynecol Oncol ; 164(1): 154-169, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34799137

RESUMEN

OBJECTIVES: Tumor vasculature is structurally abnormal, with anatomical deformities, reduced pericyte coverage and low tissue perfusion. As a result of this vascular dysfunction, tumors are often hypoxic, which is associated with an aggressive tumor phenotype, and reduced delivery of therapeutic compounds to the tumor. We have previously shown that a peptide containing the thrombospondin-1 type I repeats (3TSR) specifically targets tumor vessels and induces vascular normalization in a mouse model of epithelial ovarian cancer (EOC). However, due to its small size, 3TSR is rapidly cleared from circulation. We now introduce a novel construct with the 3TSR peptide fused to the C-terminus of each of the two heavy chains of the Fc region of human IgG1 (Fc3TSR). We hypothesize that Fc3TSR will have greater anti-tumor activity in vitro and in vivo compared to the native compound. METHODS: Fc3TSR was evaluated in vitro using proliferation and apoptosis assays to investigate differences in efficacy compared to native 3TSR. In light of the multivalency of Fc3TSR, we also investigate whether it induces greater clustering of its functional receptor, CD36. We also compare the compounds in vivo using an orthotopic, syngeneic mouse model of advanced stage EOC. The impact of the two compounds on changes to tumor vasculature morphology was also investigated. RESULTS: Fc3TSR significantly decreased the viability and proliferative potential of EOC cells and endothelial cells in vitro compared to native 3TSR. High-resolution imaging followed by image correlation spectroscopy demonstrated enhanced clustering of the CD36 receptor in cells treated with Fc3TSR. This was associated with enhanced downstream signaling and greater in vitro and in vivo cellular responses. Fc3TSR induced greater vascular normalization and disease regression compared to native 3TSR in an orthotopic, syngeneic mouse model of advanced stage ovarian cancer. CONCLUSION: The development of Fc3TSR which is greater in size, stable in circulation and enhances receptor activation compared to 3TSR, facilitates its translational potential as a therapy in the treatment of metastatic advanced stage ovarian cancer.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Inmunoglobulina G/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Trombospondina 1/uso terapéutico , Inhibidores de la Angiogénesis/farmacocinética , Inhibidores de la Angiogénesis/farmacología , Animales , Carcinoma Epitelial de Ovario/patología , Línea Celular Tumoral/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunoglobulina G/farmacología , Ratones , Ratones Endogámicos C57BL , Neovascularización Patológica , Neoplasias Ováricas/patología , Trombospondina 1/farmacocinética , Trombospondina 1/farmacología
13.
Mol Genet Metab ; 134(1-2): 117-131, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34340879

RESUMEN

Gene therapy is the delivery of a therapeutic gene for endogenous cellular expression with the goal of rescuing a disease phenotype. It has been used to treat an increasing number of human diseases with many strategies proving safe and efficacious in clinical trials. Gene delivery may be viral or non-viral, performed in vivo or ex vivo, and relies on gene integration or transient expression; all of these techniques have been applied to the treatment of Fabry disease. Fabry disease is a genetic disorder of the α-galactosidase A gene, GLA, that causes an accumulation of glycosphingolipids in cells leading to cardiac, renal and cerebrovascular damage and eventually death. Currently, there are no curative treatments available, and the therapies that are used have significant drawbacks. These treatment concerns have led to the advent of gene therapies for Fabry disease. The first Fabry patients to receive gene therapy were treated with recombinant lentivirus targeting their hematopoietic stem/progenitor cells. Adeno-associated virus treatments have also begun. Alternatively, the field of gene-editing is a new and rapidly growing field. Gene-editing has been used to repair disease-causing mutations or insert genes into cellular DNA. These techniques have the potential to be applied to the treatment of Fabry disease provided the concerns of gene-editing technology, such as safety and efficiency, were addressed. This review focuses on the current state of gene therapy as it is being developed for Fabry disease, including progresses and challenges as well as an overview of gene-editing and how it may be applied to correct Fabry disease-causing mutations in the future.


Asunto(s)
Enfermedad de Fabry/genética , Enfermedad de Fabry/terapia , Edición Génica/métodos , Edición Génica/normas , Terapia Genética/métodos , Humanos , Mutación , Fenotipo , alfa-Galactosidasa/genética
14.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33946935

RESUMEN

Interferons (IFNs) are induced by viruses and are the main regulators of the host antiviral response. They balance tissue tolerance and immune resistance against viral challenges. Like all cells in the human body, neutrophils possess the receptors for IFNs and contribute to antiviral host defense. To combat viruses, neutrophils utilize various mechanisms, such as viral sensing, neutrophil extracellular trap formation, and antigen presentation. These mechanisms have also been linked to tissue damage during viral infection and inflammation. In this review, we presented evidence that a complex cross-regulatory talk between IFNs and neutrophils initiates appropriate antiviral immune responses and regulates them to minimize tissue damage. We also explored recent exciting research elucidating the interactions between IFNs, neutrophils, and severe acute respiratory syndrome-coronavirus-2, as an example of neutrophil and IFN cross-regulatory talk. Dissecting the IFN-neutrophil paradigm is needed for well-balanced antiviral therapeutics and development of novel treatments against many major epidemic or pandemic viral infections, including the ongoing pandemic of the coronavirus disease that emerged in 2019.


Asunto(s)
COVID-19/inmunología , Interferón Tipo I/inmunología , Neutrófilos/inmunología , Virosis/inmunología , Animales , Antivirales/inmunología , Trampas Extracelulares/inmunología , Humanos , SARS-CoV-2/inmunología , Transducción de Señal , Virus/inmunología
15.
BMC Biotechnol ; 20(1): 32, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32552807

RESUMEN

BACKGROUND: Oncolytic viruses are playing an increasingly important role in cancer immunotherapy applications. Given the preclinical and clinical efficacy of these virus-based therapeutics, there is a need for fast, simple, and inexpensive downstream processing methodologies to purify biologically active viral agents that meet the increasingly higher safety standards stipulated by regulatory authorities like the Food and Drug Administration and the European Agency for the Evaluation of Medicinal Products. However, the production of virus materials for clinical dosing of oncolytic virotherapies is currently limited-in quantity, quality, and timeliness-by current purification technologies. Adsorption of virus particles to solid phases provides a convenient and practical choice for large-scale fractionation and recovery of viruses from cell and media contaminants. Indeed, chromatography has been deemed the most promising technology for large-scale purification of viruses for biomedical applications. The implementation of new chromatography media has improved process performance, but low yields and long processing times required to reach the desired purity are still limiting. RESULTS: Here we report the development of an interference chromatography-based process for purifying high titer, clinical grade oncolytic Newcastle disease virus using NatriFlo® HD-Q membrane technology. This novel approach to optimizing chromatographic performance utilizes differences in molecular bonding interactions to achieve high purity in a single ion exchange step. CONCLUSIONS: When used in conjunction with membrane chromatography, this high yield method based on interference chromatography has the potential to deliver efficient, scalable processes to enable viable production of oncolytic virotherapies.


Asunto(s)
Cromatografía/métodos , Virus/aislamiento & purificación , Adsorción , Animales , Femenino , Fibroblastos , Ratones Endogámicos BALB C , Enfermedad de Newcastle/virología , Viroterapia Oncolítica/métodos , Virión
16.
J Immunol ; 200(2): 450-458, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29311387

RESUMEN

Oncolytic viruses (OVs) are multimodal cancer therapeutics, with one of their dominant mechanisms being in situ vaccination. There is a growing consensus that optimal cancer therapies should generate robust tumor-specific immune responses. Immunogenic cell death (ICD) is a paradigm of cellular demise culminating in the spatiotemporal release of danger-associated molecular patterns that induce potent anticancer immunity. Alongside traditional ICD inducers like anthracycline chemotherapeutics and radiation, OVs have emerged as novel members of this class of therapeutics. OVs replicate in cancers and release tumor Ags, which are perceived as dangerous because of simultaneous expression of pathogen-associated molecular patterns that activate APCs. Therefore, OVs provide the target Ags and danger signals required to induce adaptive immune responses. This review discusses why OVs are attractive candidates for generating ICD, biological barriers limiting their success in the clinic, and groundbreaking strategies to potentiate ICD and antitumor immunity with rationally designed OV-based combination therapies.


Asunto(s)
Muerte Celular/inmunología , Sistema Inmunológico/inmunología , Inmunoterapia , Neoplasias/inmunología , Neoplasias/terapia , Viroterapia Oncolítica , Virus Oncolíticos/inmunología , Alarminas/genética , Alarminas/metabolismo , Animales , Terapia Combinada/métodos , Terapia Genética/métodos , Humanos , Sistema Inmunológico/metabolismo , Inmunoterapia/métodos , Neoplasias/genética , Neoplasias/metabolismo , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética
17.
J Fish Dis ; 43(10): 1237-1247, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32794227

RESUMEN

Autophagy modulation influences the success of intracellular pathogens, and an understanding of the mechanisms involved might offer practical options to reduce the impact of infectious disease. Viral haemorrhagic septicaemia virus (VHSV) can cause high mortality and economic loss in some commercial fish species. VHSV IVb was used to infect a rainbow trout gill cell line, RTgill-W1, followed by the treatment of the cells with different autophagy-modulating reagents. LC3II protein using Western blot was significantly (p < .05) decreased for two days following VHSV infection, and immunofluorescence confirmed that LC3II-positive intracytoplasmic puncta were also decreased. Infection with VHSV resulted in significantly decreased expression of the autophagy-related (Atg) genes atg4, at12, atg13 and becn1 after one day using quantitative PCR. Both viral gene copy number and VHSV N protein were significantly decreased by treating the cells with autophagy-blocking (chloroquine) and autophagy-inhibiting reagents (deoxynivalenol and 3-methyladenine) after three days, while autophagy induction (restricted nutrition and rapamycin) had limited effect. Only treatment of RTgill-W1 with deoxynivalenol resulted in a significant increase in expression of type I interferon. Therefore, the suppression of autophagy initially occurs after VHSV IVb infection, but the modulation of autophagy can also inhibit VHSV IVb infection in RTgill-W1 after three days.


Asunto(s)
Autofagia , Células Epiteliales/virología , Septicemia Hemorrágica Viral/patología , Novirhabdovirus/patogenicidad , Oncorhynchus mykiss/virología , Animales , Línea Celular , Células Epiteliales/efectos de los fármacos , Dosificación de Gen , Branquias/citología , Novirhabdovirus/genética , Proteínas de la Nucleocápside/genética
18.
Int J Mol Sci ; 21(17)2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32882969

RESUMEN

Neutrophils are innate leukocytes that mount a rapid response to invading pathogens and sites of inflammation. Although neutrophils were traditionally considered responders to bacterial infections, recent advances have demonstrated that they are interconnected with both viral infections and cancers. One promising treatment strategy for cancers is to administer an oncolytic virus to activate the immune system and directly lyse cancerous cells. A detailed characterization of how the innate immune system responds to a viral-based therapy is paramount in identifying its systemic effects. This study analyzed how administering the rhabdovirus vesicular stomatitis virus (VSV) intravenously at 1 × 109 PFU acutely influenced neutrophil populations. Bone marrow, blood, lungs, and spleen were acquired three- and 24-h after administration of VSV for analysis of neutrophils by flow cytometry. Infection with VSV caused neutrophils to rapidly egress from the bone marrow and accumulate in the lungs. A dramatic increase in immature neutrophils was observed in the lungs, as was an increase in the antigen presentation potential of these cells within the spleen. Furthermore, the potential for neutrophils to acquire viral transgene-encoded proteins was monitored using a variant of VSV that expressed enhanced green fluorescent protein (GFP). If an in vitro population of splenocytes were exposed to αCD3 and αCD28, a substantial proportion of the neutrophils would become GFP-positive. This suggested that the neutrophils could either acquire more virus-encoded antigens from infected splenocytes or were being directly infected. Five different dosing regimens were tested in mice, and it was determined that a single dose of VSV or two doses of VSV administered at a 24-h interval, resulted in a substantial proportion of neutrophils in the bone marrow becoming GFP-positive. This correlated with a decrease in the number of splenic neutrophils. Two doses administered at intervals longer than 24-h did not have these effects, suggesting that neutrophils became resistant to antigen uptake or direct infection with VSV beyond 24-h of activation. These findings implicated neutrophils as major contributors to oncolytic rhabdoviral therapies. They also provide several clear future directions for research and suggest that neutrophils should be carefully monitored during the development of all oncolytic virus-based treatment regimens.


Asunto(s)
Presentación de Antígeno/inmunología , Neutrófilos/inmunología , Viroterapia Oncolítica , Virus Oncolíticos/genética , Estomatitis Vesicular/inmunología , Virus de la Estomatitis Vesicular Indiana/inmunología , Proteínas no Estructurales Virales/metabolismo , Animales , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Endogámicos C57BL , Estomatitis Vesicular/terapia , Estomatitis Vesicular/virología , Proteínas no Estructurales Virales/inmunología
19.
J Infect Dis ; 217(6): 916-925, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29365142

RESUMEN

The 2013-2016 West Africa outbreak demonstrated the epidemic potential of Ebola virus and highlighted the need for counter strategies. Monoclonal antibody (mAb)-based therapies hold promise as treatment options for Ebola virus infections. However, production of clinical-grade mAbs is labor intensive, and immunity is short lived. Conversely, adeno-associated virus (AAV)-mediated mAb gene transfer provides the host with a genetic blueprint to manufacture mAbs in vivo, leading to steady release of antibody over many months. Here we demonstrate that AAV-mediated expression of nonneutralizing mAb 5D2 or 7C9 confers 100% protection against mouse-adapted Ebola virus infection, while neutralizing mAb 2G4 was 83% protective. A 2-component cocktail, AAV-2G4/AAV-5D2, provided complete protection when administered 7 days prior to challenge and was partially protective with a 3-day lead time. Finally, AAV-mAb therapies provided sustained protection from challenge 5 months following AAV administration. AAV-mAb may be a viable alternative strategy for vaccination against emerging infectious diseases.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Dependovirus/inmunología , Ebolavirus , Fiebre Hemorrágica Ebola/prevención & control , Animales , Anticuerpos Antivirales/inmunología , Fiebre Hemorrágica Ebola/virología , Inmunización Pasiva , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA