RESUMEN
Using time-related phenotypic data, methods of composite interval mapping and multiple-trait composite interval mapping based on least squares were applied to map quantitative trait loci (QTL) underlying the development of tiller number in rice. A recombinant inbred population and a corresponding saturated molecular marker linkage map were constructed for the study. Tiller number was recorded every 4 or 5 days for a total of seven times starting at 20 days after sowing. Five QTL were detected on chromosomes 1, 3, and 5. These QTL explained more than half of the genetic variance at the final observation. All the QTL displayed an S-shaped expression curve. Three QTL reached their highest expression rates during active tillering stage, while the other two QTL achieved this either before or after the active tillering stage.
Asunto(s)
Mapeo Cromosómico , Genes de Plantas , Oryza/genética , Carácter Cuantitativo Heredable , Factores de TiempoRESUMEN
Chromosome 5A of bread wheat, Triticum aestivum carries the major gene, Vrnl, which is one of the main determinants of the winter/spring growth habit polymorphism in this species. Genetical analysis of this chromosome has been carried out using single-chromosome recombinant lines to establish the pleiotropic effects of this locus and two other major genes, q determining ear morphology and bl determining the presence of awns, on important agronomic characters. The three major genes were located on the long arm of chromosome 5A with a gene order of: centromere -bl-q-Vrnl. Analysis of quantitative characters from a winter sowing revealed pleiotropic effects of Vrnl or the effects of closely linked loci on the characters plant height, tiller number and spikelet number. However effects on ear emergence time were not associated with Vrnl but with q as were effects on spikelet number and ear length. In addition a locus determining yield/plant was located between Vrnl and q. Independant loci determining height and ear length were apparent on the short arm of chromosome 5A. From a spring sowing, however, there was a large pleiotropic effect of Vrnl on ear emergence time, as well as the effects previously detected. In addition, associated with q were effects on plant height and grain size which were not expressed from the winter sowing.
RESUMEN
The major endosperm proteins in a range of genotypes of hexaploid wheat have been fractionated by two-dimensional electrophoresis. The genotypes included nine varieties and forty four intervarietal substitution lines in which chromosomes 1A, 1B, 1D, 6A, 6B or 6D from eight of the varieties have been introduced one at a time into a common genetic background. The appearance of different protein subunits was often correlated with a chromosome substitution. This showed that many of the genes for the high molecular weight protein subunits (molecular weight range 55,000 to 140,000 determined by SDS polyacrylamide gel electrophoresis) are specified by chromosomes 1A, 1B and 1D while many of the lower molecular weight subunits (molecular weight range 30,000 to 45,000) are specified by chromosomes 6A, 6B and 6D. The different protein subunits correlated with chromosome substitution could not always be recognised in the varietal source of the substituted chromosome. The different subunits specified by homologous chromosomes in different wheat varieties may differ in isoelectric point and/or molecular weight.
RESUMEN
The genes controlling the synthesis of the high-molecular-weight subunits of glutenin on the long arms of chromosomes 1A and IB were mapped to the ω-gliadin genes on the short arms by analysing the progeny of three test crosses by sodium dodecyl sulphate, polyacrylamide-gel electrophoresis. Only very weak linkages were detected: the percentage recombination ranged from 39% to 47% and as the values did not significantly differ from each other, the data was pooled. A mean recombination of 43% was obtained and the map distance between glutenin and gliadin genes was calculated to be 66 cM. The analysis of three crosses involving telocentric lines revealed that the glutenin subunit genes on chromosomes 1A, IB and ID are tightly linked to the centromere, the mean map distance being 9.0 cM.
RESUMEN
Restriction fragment length polymorphism (RFLP) mapping was attempted using 18 cDNA clones, 14 anonymous and 4 of known function, which had been shown to have homologous DNA sequences on the group 7 chromosomes of wheat. The loci identified by these probes have been mapped on one or more chromosomes in this homoeologous group using linkage data derived from various F2, random inbred, doubled haploid and single chromosome recombinant populations. The maps also include three isozyme loci, five disease resistance loci, two anthocyanin pigment loci and a vernalisation response locus. The mapping data have been used to determine the extent of map co-linearity over the A, B and D genomes, the degree of RFLP variability in the three genomes and the relative efficiency of various restriction enzymes in detecting RFLPs in wheat. The strategy for future mapping in wheat, particularly the use of "alien" genomes or segments, such as that from Aegilops ventricosa used here, is discussed.
RESUMEN
World wheat grain yields increased substantially in the 1960s and 1970s because farmers rapidly adopted the new varieties and cultivation methods of the so-called 'green revolution'. The new varieties are shorter, increase grain yield at the expense of straw biomass, and are more resistant to damage by wind and rain. These wheats are short because they respond abnormally to the plant growth hormone gibberellin. This reduced response to gibberellin is conferred by mutant dwarfing alleles at one of two Reduced height-1 (Rht-B1 and Rht-D1) loci. Here we show that Rht-B1/Rht-D1 and maize dwarf-8 (d8) are orthologues of the Arabidopsis Gibberellin Insensitive (GAI) gene. These genes encode proteins that resemble nuclear transcription factors and contain an SH2-like domain, indicating that phosphotyrosine may participate in gibberellin signalling. Six different orthologous dwarfing mutant alleles encode proteins that are altered in a conserved amino-terminal gibberellin signalling domain. Transgenic rice plants containing a mutant GAI allele give reduced responses to gibberellin and are dwarfed, indicating that mutant GAI orthologues could be used to increase yield in a wide range of crop species.