Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 87(11)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33741627

RESUMEN

Sulfolobus acidocaldarius is a thermoacidophilic crenarchaeon with optimal growth at 80°C and pH 2 to 3. Due to its unique physiological properties, allowing life at environmental extremes, and the recent availability of genetic tools, this extremophile has received increasing interest for biotechnological applications. In order to elucidate the potential of tolerating process-related stress conditions, we investigated the response of S. acidocaldarius toward the industrially relevant organic solvent 1-butanol. In response to butanol exposure, biofilm formation of S. acidocaldarius was enhanced and occurred at up to 1.5% (vol/vol) 1-butanol, while planktonic growth was observed at up to 1% (vol/vol) 1-butanol. Confocal laser-scanning microscopy revealed that biofilm architecture changed with the formation of denser and higher tower-like structures. Concomitantly, changes in the extracellular polymeric substances with enhanced carbohydrate and protein content were determined in 1-butanol-exposed biofilms. Using scanning electron microscopy, three different cell morphotypes were observed in response to 1-butanol. Transcriptome and proteome analyses were performed comparing the response of planktonic and biofilm cells in the absence and presence of 1-butanol. In response to 1% (vol/vol) 1-butanol, transcript levels of genes encoding motility and cell envelope structures, as well as membrane proteins, were reduced. Cell division and/or vesicle formation were upregulated. Furthermore, changes in immune and defense systems, as well as metabolism and general stress responses, were observed. Our findings show that the extreme lifestyle of S.acidocaldarius coincided with a high tolerance to organic solvents. This study provides what may be the first insights into biofilm formation and membrane/cell stress caused by organic solvents in S. acidocaldariusIMPORTANCEArchaea are unique in terms of metabolic and cellular processes, as well as the adaptation to extreme environments. In the past few years, the development of genetic systems and biochemical, genetic, and polyomics studies has provided deep insights into the physiology of some archaeal model organisms. In this study, we used S. acidocaldarius, which is adapted to the two extremes of low pH and high temperature, to study its tolerance and robustness as well as its global cellular response toward organic solvents, as exemplified by 1-butanol. We were able to identify biofilm formation as a primary cellular response to 1-butanol. Furthermore, the triggered cell/membrane stress led to significant changes in culture heterogeneity accompanied by changes in central cellular processes, such as cell division and cellular defense systems, thus suggesting a global response for the protection at the population level.


Asunto(s)
1-Butanol/efectos adversos , Biopelículas/efectos de los fármacos , Plancton/efectos de los fármacos , Proteoma , Solventes/efectos adversos , Sulfolobus acidocaldarius/fisiología , Transcriptoma , Aclimatación , Proteínas Bacterianas/metabolismo , Genes Bacterianos , Microscopía Electrónica de Rastreo , Plancton/fisiología , Estrés Fisiológico , Sulfolobus acidocaldarius/efectos de los fármacos , Sulfolobus acidocaldarius/genética , Sulfolobus acidocaldarius/ultraestructura
2.
J Biol Chem ; 294(18): 7460-7471, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-30902813

RESUMEN

Phosphorylation-dependent interactions play crucial regulatory roles in all domains of life. Forkhead-associated (FHA) and von Willebrand type A (vWA) domains are involved in several phosphorylation-dependent processes of multiprotein complex assemblies. Although well-studied in eukaryotes and bacteria, the structural and functional contexts of these domains are not yet understood in Archaea. Here, we report the structural base for such an interacting pair of FHA and vWA domain-containing proteins, ArnA and ArnB, in the thermoacidophilic archaeon Sulfolobus acidocaldarius, where they act synergistically and negatively modulate motility. The structure of the FHA domain of ArnA at 1.75 Å resolution revealed that it belongs to the subclass of FHA domains, which recognizes double-pSer/pThr motifs. We also solved the 1.5 Å resolution crystal structure of the ArnB paralog vWA2, disclosing a complex topology comprising the vWA domain, a ß-sandwich fold, and a C-terminal helix bundle. We further show that ArnA binds to the C terminus of ArnB, which harbors all the phosphorylation sites identified to date and is important for the function of ArnB in archaellum regulation. We also observed that expression levels of the archaellum components in response to changes in nutrient conditions are independent of changes in ArnA and ArnB levels and that a strong interaction between ArnA and ArnB observed during growth on rich medium sequentially diminishes after nutrient limitation. In summary, our findings unravel the structural features in ArnA and ArnB important for their interaction and functional archaellum expression and reveal how nutrient conditions affect this interaction.


Asunto(s)
Proteínas Arqueales/metabolismo , Regulación de la Expresión Génica Arqueal , Genes Arqueales , Sulfolobus acidocaldarius/genética , Proteínas Arqueales/química , Proteínas Arqueales/genética , Cristalografía por Rayos X , Medios de Cultivo , Fosforilación , Conformación Proteica , Sulfolobus acidocaldarius/metabolismo
3.
Appl Microbiol Biotechnol ; 104(23): 10293-10305, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33025127

RESUMEN

The commercial reality of microalgal biotechnology for the production of individual bioactives is constrained by the high cost of production and requires a biorefinery approach. In this investigation, we examined the influence of different nutrient deprivation (nitrogen (N), phosphorus (P), sulphur (S) and manganese (Mn)) on growth, chlorophyll a (Chl a), biohydrogen (H2) and fatty acid profiles in Parachlorella kessleri EMCCN 3073 under both aerobic and anaerobic conditions. Anaerobic conditions combined with the nutrient deprivation resulted in cell division blockage, reduction in Chl a and remarkable changes in pH, whereas a significant increase in the H2 production was observed after 24 h. The highest cumulative H2 productivity was observed in N-deficient medium (300 µL/L, day 9) followed by Mn-deficient medium (250 µL/L, day 7). The highest H2 production rate (3.37 µL/L/h) was achieved by Mn-deficient medium after 24 h. In terms of fatty acid composition, P. kessleri exhibited a differential response to different nutrient stresses. Under aerobic conditions, N-deficient media resulted in the highest lipid content (119% compared to control, day 7), whereas earlier lipid induction at (1-3 days) was observed with Mn- and S-deficient media with 18-91% and 25-34% increase, respectively, compared with the replete control. Meanwhile, higher lipid content was observed under anaerobic conditions combined with Mn-, N-, P- and S-deprived media (day 1) with 20%, 13%, 8% and 7% increases respectively compared with the control. This investigation, for the first time clearly, highlights the potential of P. kessleri as a sustainable biorefinery platform, for H2 and fatty acid bio-production under anaerobic conditions. KEY POINTS: • Parachlorella kessleri could provide a future sustainable biorefinery platform. • Nutrient-deprived anaerobic conditions blocked cell growth but differentially induced H2 production. • Nutrient status, under both aerobic/anaerobic conditions, alters lipids and fatty acids profile of P. kessleri. • Nutrient-deprived (N- and Mn-) anaerobic conditions: future biorefinery platform.


Asunto(s)
Chlorophyta , Microalgas , Biocombustibles , Biomasa , Clorofila A , Lípidos , Nutrientes
4.
Environ Microbiol ; 21(1): 343-359, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30394639

RESUMEN

Cyanobacterial alternative sigma factors are crucial players in environmental adaptation processes, which may involve bacterial responses related to maintenance of cell envelope and control of secretion pathways. Here, we show that the Group 3 alternative sigma factor F (SigF) plays a pleiotropic role in Synechocystis sp. PCC 6803 physiology, with a major impact on growth and secretion mechanisms, such as the production of extracellular polysaccharides, vesiculation and protein secretion. Although ΔsigF growth was significantly impaired, the production of released polysaccharides (RPS) increased threefold to fourfold compared with the wild-type. ΔsigF exhibits also impairment in formation of outer-membrane vesicles (OMVs) and pili, as well as several other cell envelope alterations. Similarly, the exoproteome composition of ΔsigF differs from the wild-type both in amount and type of proteins identified. Quantitative proteomics (iTRAQ) and an in silico analysis of SigF binding motifs revealed possible targets/pathways under SigF control. Besides changes in protein levels involved in secretion mechanisms, our results indicated that photosynthesis, central carbon metabolism and protein folding/degradation mechanisms are altered in ΔsigF. Overall, this work provided new evidences about the role of SigF on Synechocystis physiology and associates this regulatory element with classical and non-classical secretion pathways.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fimbrias Bacterianas/metabolismo , Vesículas Secretoras/metabolismo , Factor sigma/genética , Factor sigma/metabolismo , Synechocystis/metabolismo , Metabolismo Energético/genética , Fotosíntesis/genética , Polisacáridos Bacterianos/biosíntesis , Synechocystis/genética
5.
Mol Pharm ; 16(2): 632-647, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30608694

RESUMEN

There is an urgent need (recognized in FDA guidance, 2018) to optimize the dose of medicines given to patients for maximal drug efficacy and limited toxicity (precision dosing), which can be facilitated by quantitative systems pharmacology (QSP) models. Accurate quantification of proteins involved in drug clearance is essential to build and improve QSP models for any target population. Here we describe application of label-free proteomics in microsomes from 23 human livers to simultaneously quantify 188 enzymes and 66 transporters involved in xenobiotic disposition, including 17 cytochrome P450s (CYPs), 10 UDP-glucuronosyltransferases (UGTs), 7 ATP-binding cassette (ABC) transporters, and 11 solute carrier (SLC) transporters; six of these proteins are quantified for the first time. The methodology allowed quantification of thousands of proteins, allowing estimation of sample purity and understanding of global patterns of protein expression. There was overall good agreement with targeted quantification and enzyme activity data, where this was available. The effects of sex, age, genotype, and BMI on enzyme and transporter expression were assessed. Decreased expression of enzymes and transporters with increasing BMI was observed, but a tendency for older donors to have higher BMIs may have confounded this result. The effect of genotype on enzymes expression was, however, clear-cut, with CYP3A5*1/*3 genotype expressed 16-fold higher compared with its mostly inactive *3/*3 counterpart. Despite the complex, time-consuming data analysis required for label-free methodology, the advantages of the label-free method make it a valuable approach to populate a broad range of system parameters simultaneously for target patients within pharmacology and toxicology models.


Asunto(s)
Hígado/metabolismo , Proteómica/métodos , Adolescente , Adulto , Anciano , Cromatografía Liquida , Sistema Enzimático del Citocromo P-450/metabolismo , Femenino , Glucuronosiltransferasa/metabolismo , Humanos , Masculino , Proteínas de Transporte de Membrana/metabolismo , Persona de Mediana Edad , Espectrometría de Masas en Tándem , Adulto Joven
6.
Microb Cell Fact ; 18(1): 10, 2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30657054

RESUMEN

BACKGROUND: Many valuable biopharmaceutical and biotechnological proteins have been produced in Escherichia coli, however these proteins are almost exclusively localised in the cytoplasm or periplasm. This presents challenges for purification, i.e. the removal of contaminating cellular constituents. One solution is secretion directly into the surrounding media, which we achieved via the 'hijack' of the flagellar type III secretion system (FT3SS). Ordinarily flagellar subunits are exported through the centre of the growing flagellum, before assembly at the tip. However, we exploit the fact that in the absence of certain flagellar components (e.g. cap proteins), monomeric flagellar proteins are secreted into the supernatant. RESULTS: We report the creation and iterative improvement of an E. coli strain, by means of a modified FT3SS and a modular plasmid system, for secretion of exemplar proteins. We show that removal of the flagellin and HAP proteins (FliC and FlgKL) resulted in an optimal prototype. We next developed a high-throughput enzymatic secretion assay based on cutinase. This indicated that removal of the flagellar motor proteins, motAB (to reduce metabolic burden) and protein degradation machinery, clpX (to boost FT3SS levels intracellularly), result in high capacity secretion. We also show that a secretion construct comprising the 5'UTR and first 47 amino acidsof FliC from E. coli (but no 3'UTR) achieved the highest levels of secretion. Upon combination, we show a 24-fold improvement in secretion of a heterologous (cutinase) enzyme over the original strain. This improved strain could export a range of pharmaceutically relevant heterologous proteins [hGH, TrxA, ScFv (CH2)], achieving secreted yields of up to 0.29 mg L-1, in low cell density culture. CONCLUSIONS: We have engineered an E. coli which secretes a range of recombinant proteins, through the FT3SS, to the extracellular media. With further developments, including cell culture process strategies, we envision further improvement to the secreted titre of recombinant protein, with the potential application for protein production for biotechnological purposes.


Asunto(s)
Escherichia coli/metabolismo , Ingeniería Metabólica , Sistemas de Secreción Tipo III/metabolismo , Regiones no Traducidas 5' , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Flagelos/metabolismo , Flagelina/genética , Hormona de Crecimiento Humana/genética , Hormona de Crecimiento Humana/metabolismo , Humanos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
7.
Biochem Biophys Res Commun ; 495(1): 686-692, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29113801

RESUMEN

Although Escherichia coli has been engineered to perform N-glycosylation of recombinant proteins, an optimal glycosylating strain has not been created. By inserting a codon optimised Campylobacter oligosaccharyltransferase onto the E. coli chromosome, we created a glycoprotein platform strain, where the target glycoprotein, sugar synthesis and glycosyltransferase enzymes, can be inserted using expression vectors to produce the desired homogenous glycoform. To assess the functionality and glycoprotein producing capacity of the chromosomally based OST, a combined Western blot and parallel reaction monitoring mass spectrometry approach was applied, with absolute quantification of glycoprotein. We demonstrated that chromosomal oligosaccharyltransferase remained functional and facilitated N-glycosylation. Although the engineered strain produced less total recombinant protein, the glycosylation efficiency increased by 85%, and total glycoprotein production was enhanced by 17%.


Asunto(s)
Proteínas Bacterianas/genética , Escherichia coli/fisiología , Edición Génica/métodos , Genoma Bacteriano/genética , Glicoproteínas/biosíntesis , Hexosiltransferasas/genética , Proteínas de la Membrana/genética , Ingeniería Metabólica/métodos , Proteínas Bacterianas/metabolismo , Mejoramiento Genético/métodos , Glicoproteínas/genética , Glicosilación , Hexosiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo
8.
New Phytol ; 217(2): 599-612, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29034959

RESUMEN

The unicellular green alga Lobomonas rostrata requires an external supply of vitamin B12 (cobalamin) for growth, which it can obtain in stable laboratory cultures from the soil bacterium Mesorhizobium loti in exchange for photosynthate. We investigated changes in protein expression in the alga that allow it to engage in this mutualism. We used quantitative isobaric tagging (iTRAQ) proteomics to determine the L. rostrata proteome grown axenically with B12 supplementation or in coculture with M. loti. Data are available via ProteomeXchange (PXD005046). Using the related Chlamydomonas reinhardtii as a reference genome, 588 algal proteins could be identified. Enzymes of amino acid biosynthesis were higher in coculture than in axenic culture, and this was reflected in increased amounts of total cellular protein and several free amino acids. A number of heat shock proteins were also elevated. Conversely, photosynthetic proteins and those of chloroplast protein synthesis were significantly lower in L. rostrata cells in coculture. These observations were confirmed by measurement of electron transfer rates in cells grown under the two conditions. The results indicate that, despite the stability of the mutualism, L. rostrata experiences stress in coculture with M. loti, and must adjust its metabolism accordingly.


Asunto(s)
Chlorophyta/crecimiento & desarrollo , Chlorophyta/metabolismo , Mesorhizobium/crecimiento & desarrollo , Proteómica , Simbiosis/efectos de los fármacos , Vitamina B 12/farmacología , Proteínas Algáceas/metabolismo , Aminoácidos/metabolismo , Chlorophyta/efectos de los fármacos , Chlorophyta/genética , Técnicas de Cocultivo , Biología Computacional , Transporte de Electrón/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Mesorhizobium/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo
9.
Rapid Commun Mass Spectrom ; 32(2): 75-85, 2018 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-29055059

RESUMEN

RATIONALE: Analysis of post-translationally modified peptides by mass spectrometry (MS) remains incomplete, in part due to incomplete sampling of all peptides which is inherent to traditional data-dependent acquisition (DDA). An alternative MS approach, data-independent acquisition (DIA), enables comprehensive recording of all detectable precursor and product ions, independent of precursor intensity. The use of broadband collision-induced dissociation (bbCID), a DIA method, was evaluated for the identification of protein glycosylation and phosphorylation. METHODS: bbCID was applied to identify glycopeptides and phosphopeptides generated from standard proteins using a high-resolution Bruker maXis 3G mass spectrometer. In bbCID, precursor and product ion spectra were obtained by alternating low and high collision energy. Precursor ions were assigned manually based on the detection of diagnostic ions specific to either glycosylation or phosphorylation. The composition of the glycan modification was resolved in the positive ion mode, while the level of phosphorylation was investigated in the negative ion mode. RESULTS: The results demonstrate for the first time that the use of a bbCID approach is suitable for the identification of glycopeptides and phosphopeptides based on the detection of specific diagnostic and associated precursor ions. The novel use of bbCID in negative ion mode allowed the discrimination of singly and multiply phosphorylated peptides based on the detection of phosphate diagnostic ions. The results also demonstrate the ability of this approach to allow the identification of glycan composition in N- and O-linked glycopeptides, in positive ion mode. CONCLUSIONS: We contend that bbCID is a valuable addition to the existing toolkit for PTM discovery. Moreover, this technique could be employed to direct targeted proteomics methods, particularly where there is no a priori information on glycosylation or phosphorylation status. This technique is immediately relevant to the characterisation of individual proteins or biological samples of low complexity, as demonstrated for the analysis of the glycosylation status of a therapeutic protein.


Asunto(s)
Espectrometría de Masas/métodos , Proteínas/química , Glicopéptidos/química , Glicosilación , Fosfopéptidos/química , Fosforilación
10.
J Proteome Res ; 16(7): 2370-2383, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28514846

RESUMEN

The thermoacidophilic crenarchaeon Sulfolobus solfataricus has been widely used as a model organism for archaeal systems biology research. Investigation using its spontaneous mutant PBL2025 provides an effective metabolic baseline to study subsequent mutagenesis-induced functional process shifts as well as changes in feedback inhibitions. Here, an untargeted metabolic investigation using quantitative proteomics and metabolomics was performed to correlate changes in S. solfataricus strains P2 against PBL2025 and under both glucose and tryptone. The study is combined with pathway enrichment analysis to identify prominent proteins with differential stoichiometry. Proteome level quantification reveals that over 20% of the observed overlapping proteome is differentially expressed under these conditions. Metabolic-induced differential expressions are observed along the central carbon metabolism, along with 12 other significantly regulated pathways. Current findings suggest that PBL2025 is able to compensate through the induction of carbon metabolism, as well as other anabolic pathways such as Val, Leu and iso-Leu biosynthesis. Studying protein abundance changes after changes in carbon sources also reveals distinct differences in metabolic strategies employed by both strains, whereby a clear down-regulation of carbohydrate and nucleotide metabolism is observed for P2, while a mixed response through down-regulation of energy formation and up-regulation of glycolysis is observed for PBL2025. This study contributes, to date, the most comprehensive network of changes in carbohydrate and amino acid pathways using the complementary systems biology observations at the protein and metabolite levels. Current findings provide a unique insight into molecular processing changes through natural (spontaneous) metabolic rewiring, as well as a systems biology understanding of the metabolic elasticity of thermoacidophiles to environmental carbon source change, potentially guiding more efficient directed mutagenesis in archaea.


Asunto(s)
Proteínas Arqueales/genética , Carbono/metabolismo , Regulación de la Expresión Génica Arqueal , Mutagénesis , Proteoma/genética , Sulfolobus solfataricus/genética , Aminoácidos/biosíntesis , Proteínas Arqueales/metabolismo , Retroalimentación Fisiológica , Glucosa/metabolismo , Glucosa/farmacología , Redes y Vías Metabólicas/genética , Metaboloma/genética , Peptonas/metabolismo , Peptonas/farmacología , Proteoma/metabolismo , Proteómica/métodos , Sulfolobus solfataricus/efectos de los fármacos , Sulfolobus solfataricus/metabolismo
11.
Mol Microbiol ; 102(5): 882-908, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27611014

RESUMEN

Archaea are characterised by a complex metabolism with many unique enzymes that differ from their bacterial and eukaryotic counterparts. The thermoacidophilic archaeon Sulfolobus solfataricus is known for its metabolic versatility and is able to utilize a great variety of different carbon sources. However, the underlying degradation pathways and their regulation are often unknown. In this work, the growth on different carbon sources was analysed, using an integrated systems biology approach. The comparison of growth on L-fucose and D-glucose allows first insights into the genome-wide changes in response to the two carbon sources and revealed a new pathway for L-fucose degradation in S. solfataricus. During growth on L-fucose major changes in the central carbon metabolic network, as well as an increased activity of the glyoxylate bypass and the 3-hydroxypropionate/4-hydroxybutyrate cycle were observed. Within the newly discovered pathway for L-fucose degradation the following key reactions were identified: (i) L-fucose oxidation to L-fuconate via a dehydrogenase, (ii) dehydration to 2-keto-3-deoxy-L-fuconate via dehydratase, (iii) 2-keto-3-deoxy-L-fuconate cleavage to pyruvate and L-lactaldehyde via aldolase and (iv) L-lactaldehyde conversion to L-lactate via aldehyde dehydrogenase. This pathway as well as L-fucose transport shows interesting overlaps to the D-arabinose pathway, representing another example for pathway promiscuity in Sulfolobus species.


Asunto(s)
Fucosa/metabolismo , Glucosa/metabolismo , Sulfolobus solfataricus/metabolismo , Secuencia de Aminoácidos , Carbono/metabolismo , Hidroliasas/metabolismo , Redes y Vías Metabólicas , Metabolómica/métodos , Proteoma , Ácido Pirúvico/metabolismo , Sulfolobus solfataricus/genética , Biología de Sistemas/métodos , Transcriptoma
12.
Proteomics ; 16(21): 2764-2775, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27599463

RESUMEN

Anodophilic bacteria have the ability to generate electricity in microbial fuel cells (MFCs) by extracellular electron transfer to the anode. We investigated the anode-specific responses of Shewanella oneidensis MR-1, an exoelectroactive Gammaproteobacterium, using for the first time iTRAQ and 2D-LC MS/MS driven membrane proteomics to compare protein abundances in S. oneidensis when generating power in MFCs, and growing in a continuous culture. The regulated dataset produced was enriched in membrane proteins. Proteins shown to be more abundant in anaerobic electroactive anodic cells included efflux pump TolC and an uncharacterised tetratricopeptide repeat (TPR) protein, whilst the TonB2 system and associated uncharacterised proteins such as TtpC2 and DUF3450 were more abundant in microaerobic planktonic cells. In order to validate the iTRAQ data, the functional role for TolC was examined using a δTolC knockout mutant of S. oneidensis. Possible roles for the uncharacterised proteins were identified using comparative bioinformatics. We demonstrate that employing an insoluble extracellular electron acceptor requires multiple proteins involved in cell surface properties. All MS and processed data are available via ProteomeXchange with identifier PXD004090.


Asunto(s)
Fuentes de Energía Bioeléctrica , Proteómica/métodos , Shewanella/genética , Biopelículas , Electricidad , Electrodos , Transporte de Electrón , Electrones , Shewanella/química , Espectrometría de Masas en Tándem
13.
Environ Microbiol ; 18(2): 486-502, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26663346

RESUMEN

Here we report on the functional characterization of the hypothetical protein Slr1270, a TolC homologue in Synechocystis sp. PCC 6803. Analysis of a slr1270 insertion deletion mutant and respective wild-type revealed that the mutant presents increased susceptibility to antibiotics. In addition, a detailed study of the exoproteome showed that Slr1270 mediates protein secretion. Among the protein substrates dependent on Slr1270 function, we found the S-layer structural component. Electron microscopy studies of the slr1270 mutant showed that the S-layer is indeed absent. The requirement of functional Slr1270 for protein secretion and drug resistance mechanisms suggests that Slr1270 plays a role similar to that described for TolC in other bacteria. Additional phenotypic traits could also be observed, including slower growth rates at low temperature, impairment in biofilm formation and increased activity of enzymes detoxifying reactive oxygen species. Furthermore, an increased capacity of outer membrane vesicles (OMVs) formation and release was also found in the slr1270 mutant, a feature that has not yet been observed in bacteria lacking TolC. This work highlights the marked physiological fitness that the TolC-like Slr1270 bestows to the photosynthetic model Synechocystis sp. PCC 6803 and presents a valuable model for studying OMVs formation and release.


Asunto(s)
Antibacterianos/farmacología , Proteínas de la Membrana Bacteriana Externa/fisiología , Farmacorresistencia Bacteriana/genética , Proteínas de Transporte de Membrana/genética , Synechocystis/efectos de los fármacos , Synechocystis/genética , Antibacterianos/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Transporte Biológico/genética , Catalasa/genética , Catalasa/metabolismo , Mutación INDEL/genética , Peroxidasa/genética , Peroxidasa/metabolismo , Fotosíntesis , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Synechocystis/metabolismo
15.
Mol Microbiol ; 92(2): 258-72, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24527847

RESUMEN

Bacterial swimming is mediated by rotation of a filament that is assembled via polymerization of flagellin monomers after secretion via a dedicated flagellar Type III secretion system. Several bacteria decorate their flagellin with sialic acid related sugars that is essential for motility. Aeromonas caviae is a model organism for this process as it contains a genetically simple glycosylation system and decorates its flagellin with pseudaminic acid (Pse). The link between flagellin glycosylation and export has yet to be fully determined. We examined the role of glycosylation in the export and assembly process in a strain lacking Maf1, a protein involved in the transfer of Pse onto flagellin at the later stages of the glycosylation pathway. Immunoblotting, established that glycosylation is not required for flagellin export but is essential for filament assembly since non-glycosylated flagellin is still secreted. Maf1 interacts directly with its flagellin substrate in vivo, even in the absence of pseudaminic acid. Flagellin glycosylation in a flagellin chaperone mutant (flaJ) indicated that glycosylation occurs in the cytoplasm before chaperone binding and protein secretion. Preferential chaperone binding to glycosylated flagellin revealed its crucial role, indicating that this system has evolved to favour secretion of the polymerization competent glycosylated form.


Asunto(s)
Aeromonas caviae/enzimología , Aeromonas caviae/metabolismo , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos , Flagelina/metabolismo , Aeromonas caviae/genética , Proteínas Bacterianas/genética , Eliminación de Gen , Glicosilación , Unión Proteica , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Transporte de Proteínas , Azúcares Ácidos/metabolismo
16.
Mol Cell Proteomics ; 12(12): 3908-23, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24078887

RESUMEN

In this study, the in vitro and in vivo functions of the only two identified protein phosphatases, Saci-PTP and Saci-PP2A, in the crenarchaeal model organism Sulfolobus acidocaldarius were investigated. Biochemical characterization revealed that Saci-PTP is a dual-specific phosphatase (against pSer/pThr and pTyr), whereas Saci-PP2A exhibited specific pSer/pThr activity and inhibition by okadaic acid. Deletion of saci_pp2a resulted in pronounced alterations in growth, cell shape and cell size, which could be partially complemented. Transcriptome analysis of the three strains (Δsaci_ptp, Δsaci_pp2a and the MW001 parental strain) revealed 155 genes that were differentially expressed in the deletion mutants, and showed significant changes in expression of genes encoding the archaella (archaeal motility structure), components of the respiratory chain and transcriptional regulators. Phosphoproteome studies revealed 801 unique phosphoproteins in total, with an increase in identified phosphopeptides in the deletion mutants. Proteins from most functional categories were affected by phosphorylation, including components of the motility system, the respiratory chain, and regulatory proteins. In the saci_pp2a deletion mutant the up-regulation at the transcript level, as well as the observed phosphorylation pattern, resembled starvation stress responses. Hypermotility was also observed in the saci_pp2a deletion mutant. The results highlight the importance of protein phosphorylation in regulating essential cellular processes in the crenarchaeon S. acidocaldarius.


Asunto(s)
Proteínas Arqueales/genética , Regulación de la Expresión Génica Arqueal , Fosfoproteínas/genética , Proteína Fosfatasa 2/genética , Transducción de Señal/genética , Sulfolobus acidocaldarius/genética , Proteínas Arqueales/metabolismo , Transporte de Electrón/genética , Metabolismo Energético/genética , Eliminación de Gen , Perfilación de la Expresión Génica , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Anotación de Secuencia Molecular , Movimiento , Fosfoproteínas/metabolismo , Fosforilación , Proteína Fosfatasa 2/metabolismo , Sulfolobus acidocaldarius/enzimología , Sulfolobus acidocaldarius/ultraestructura , Transcriptoma
17.
Biochem J ; 458(3): 499-511, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24351045

RESUMEN

Many human-dwelling bacteria acquire sialic acid for growth or surface display. We identified previously a sialic acid utilization operon in Tannerella forsythia that includes a novel outer membrane sialic acid-transport system (NanOU), where NanO (neuraminate outer membrane permease) is a putative TonB-dependent receptor and NanU (extracellular neuraminate uptake protein) is a predicted SusD family protein. Using heterologous complementation of nanOU genes into an Escherichia coli strain devoid of outer membrane sialic acid permeases, we show that the nanOU system from the gut bacterium Bacteroides fragilis is functional and demonstrate its dependence on TonB for function. We also show that nanU is required for maximal function of the transport system and that it is expressed in a sialic acid-responsive manner. We also show its cellular localization to the outer membrane using fractionation and immunofluorescence experiments. Ligand-binding studies revealed high-affinity binding of sialic acid to NanU (Kd ~400 nM) from two Bacteroidetes species as well as binding of a range of sialic acid analogues. Determination of the crystal structure of NanU revealed a monomeric SusD-like structure containing a novel motif characterized by an extended kinked helix that might determine sugar-binding specificity. The results of the present study characterize the first bacterial extracellular sialic acid-binding protein and define a sialic acid-specific PUL (polysaccharide utilization locus).


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/metabolismo , Bacteroidetes/metabolismo , Proteínas de la Membrana/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Bacteroides fragilis/genética , Bacteroides fragilis/metabolismo , Bacteroidetes/genética , Transporte Biológico , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Intestinos/microbiología , Boca/microbiología , Mutación , Unión Proteica , Estructura Secundaria de Proteína
18.
Proteomics ; 13(18-19): 2831-50, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23894103

RESUMEN

In recent years, much progress has been made in proteomic studies to unravel metabolic pathways and basic cellular processes. This is especially interesting for members of the Archaea, the third domain of life. Archaea exhibit extraordinary features and many of their cultivable representatives are adaptable to extreme environments. Archaea harbor many unique traits besides bacterial attributes, such as size, shape, and DNA structure and eukaryal characteristics like information processing. Sulfolobus solfataricus P2, a thermoacidophilic archaeal representative, is a well-established model organism adapted to low-pH environments (pH 2-3) and high temperatures (80°C). The genome has a size of 3 Mbp and its sequence has been deciphered. Approximately 3033 predicted open reading frames have been identified and the genome is characterized by a great number of diverse insertion sequence elements. In unraveling the organisms' metabolism and lifestyle, proteomic analyses have played a major role. Much effort has been directed at this organism and is reviewed here. With the help of proteomics, unique metabolic pathways were resolved in S. solfataricus, targets for regulatory protein phosphorylation identified, and cellular responses upon virus infection as well as oxidative stress analyzed.


Asunto(s)
Proteínas Arqueales/metabolismo , Proteómica/métodos , Sulfolobus solfataricus/metabolismo , Metabolismo de los Hidratos de Carbono , Proteoma/metabolismo , Estrés Fisiológico
19.
IUBMB Life ; 65(1): 17-27, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23281034

RESUMEN

As we move further into the postgenomics age where the mountain of systems biology-generated data keeps growing, as does the number of genomes that have been sequenced, we have the exciting opportunity to understand more deeply the biology of important systems, those that are amenable to genetic manipulation and metabolic engineering. This is, of course, if we can make 'head or tail' of what we have measured and use this for robust predictions. The use of modern mass spectrometry tools has greatly facilitated our understanding of which proteins are present in a particular phenotype, their relative and absolute abundances and their state of modifications. Coupled with modern bioinformatics and systems biology modelling tools, this has the opportunity of not just providing information and understanding but also to provide targets for engineering and suggest new genetic/metabolic designs. Cellular engineering, whether it be via metabolic engineering, synthetic biology or a combination of both approaches, offers exciting potential for biotechnological exploitation in fields as diverse as medicine and energy as well as fine and bulk chemicals production. At the heart of such effective designs, proteins' interactions with other proteins or with DNA will become increasingly important. In this work, we examine the work done until now in protein-protein interactions and how this network knowledge can be used to inform ambitious cellular engineering strategies. Some examples demonstrating small molecules/biofuels and biopharmaceuticals applications are presented.


Asunto(s)
Ingeniería Celular , Proteínas/metabolismo , Unión Proteica
20.
Metab Eng ; 15: 124-33, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23164575

RESUMEN

The identification of relevant gene targets for engineering a desired trait is a key step in combinatorial strain engineering. Here, we applied the multi-Scalar Analysis of Library Enrichments (SCALEs) approach to map ethanol tolerance onto 1,000,000 genomic-library clones in Escherichia coli. We assigned fitness scores to each of the ∼4,300 genes in E. coli, and through follow-up confirmatory studies identified 9 novel genetic targets (12 genes total) that increase E. coli ethanol tolerance (up to 6-fold improved growth). These genetic targets are involved in the processes related to cell membrane composition, translation, serine biosynthesis, and transcription regulation. Transcriptional profiling of the ethanol stress response in 5 of these ethanol-tolerant clones revealed a total of 700 genes with significantly altered expression (mapped to 615 significantly enriched gene ontology terms) across all five clones, with similar overall changes in global gene expression between two clone clusters. All ethanol-tolerant clones analyzed shared 6% of the overexpressed genes and showed enrichment for transcription regulation-related GO terms. iTRAQ-based proteomic analysis of ethanol-tolerant strains identified upregulation of proteins related to ROS mitigation, fatty acid biosynthesis, and vitamin biosynthesis as compared to the parent strain's ethanol response. The approach we outline here will be useful for engineering a variety of other traits and further improvements in alcohol tolerance.


Asunto(s)
Tolerancia a Medicamentos/fisiología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Etanol/farmacología , Genoma Bacteriano/genética , Proteoma/metabolismo , Proteínas de Escherichia coli/genética , Biblioteca de Péptidos , Proteoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA