Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 22(8): 4429-4438, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32051990

RESUMEN

A strategy to create organic molecules with high degrees of radical spin multiplicity is reported in which molecular design is correlated with the behaviour of radical anions in a series of BODIPY dyads. Upon reduction of each BODIPY moiety radical anions are formed which are shown to have different spin multiplicities by electron paramagnetic resonance (EPR) spectroscopy and distinct profiles in their cyclic voltammograms and UV-visible spectra. The relationship between structure and multiplicity is demonstrated showing that the balance between singlet, biradical or triplet states in the dyads depends on relative orientation and connectivity of the BODIPY groups. The strategy is applied to the synthesis of a BODIPY triad which adopts an unusual quartet state upon reduction to its radical trianion.

2.
J Am Chem Soc ; 140(5): 1842-1854, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29290110

RESUMEN

Carbon-hydrogen bond activation of alkanes by Tp'Rh(CNR) (Tp' = Tp = trispyrazolylborate or Tp* = tris(3,5-dimethylpyrazolyl)borate) were followed by time-resolved infrared spectroscopy (TRIR) in the υ(CNR) and υ(B-H) spectral regions on Tp*Rh(CNCH2CMe3), and their reaction mechanisms were modeled by density functional theory (DFT) on TpRh(CNMe). The major intermediate species were: κ3-η1-alkane complex (1); κ2-η2-alkane complex (2); and κ3-alkyl hydride (3). Calculations predict that the barrier between 1 and 2 arises from a triplet-singlet crossing and intermediate 2 proceeds over the rate-determining C-H activation barrier to give the final product 3. The activation lifetimes measured for the Tp*Rh(CNR) and Tp*Rh(CO) fragments with n-heptane and four cycloalkanes (C5H10, C6H12, C7H14, and C8H16) increase with alkanes size and show a dramatic increase between C6H12 and C7H14. A similar step-like behavior was observed previously with CpRh(CO) and Cp*Rh(CO) fragments and is attributed to the wider difference in C-H bonds that appear at C7H14. However, Tp'Rh(CNR) and Tp'Rh(CO) fragments have much longer absolute lifetimes compared to those of CpRh(CO) and Cp*Rh(CO) fragments, because the reduced electron density in dechelated κ2-η2-alkane Tp' complexes stabilizes the d8 Rh(I) in a square-planar geometry and weakens the metal's ability for oxidative addition of the C-H bond. Further, the Tp'Rh(CNR) fragment has significantly slower rates of C-H activation in comparison to the Tp'Rh(CO) fragment for the larger cycloalkanes, because the steric bulk of the neopentyl isocyanide ligand hinders the rechelation in κ2-Tp'Rh(CNR)(cycloalkane) species and results in the C-H activation without the assistance of the rechelation.

3.
J Chem Phys ; 142(15): 154119, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25903878

RESUMEN

In contrast to the ground state, the calculation of the infrared (IR) spectroscopy of molecular singlet excited states represents a substantial challenge. Here, we use the structural IR fingerprint of the singlet excited states of a range of coumarin dyes to assess the accuracy of density functional theory based methods for the calculation of excited state IR spectroscopy. It is shown that excited state Kohn-Sham density functional theory provides a high level of accuracy and represents an alternative approach to time-dependent density functional theory for simulating the IR spectroscopy of singlet excited states.

4.
J Am Chem Soc ; 136(24): 8614-25, 2014 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-24823385

RESUMEN

Carbon-hydrogen bond activation reactions of four cycloalkanes (C5H10, C6H12, C7H14, and C8H16) by the Cp'Rh(CO) fragments (Cp' = η(5)-C5H5 (Cp) or η(5)-C5Me5 (Cp*)) were modeled theoretically by combining density functional and coupled cluster theories, and their reaction rates were measured by fast time-resolved infrared spectroscopy. The reaction has two steps, starting with the formation of a σ-complex intermediate, followed by oxidative addition of the C-H bond by the rhodium. A range of σ-complex stabilities among the electronically unique C-H bonds in a cycloalkane were calculated and are related to the individual strengths of the C-H bond's interactions with the Rh fragment and the steric repulsion that is incurred upon forming the specific σ-complex. The unexpectedly large increase in the lifetimes of the σ-complexes from cyclohexane to cycloheptane was predicted to be due to the large range of stabilities of the different σ-complexes found for cycloheptane. The reaction lifetimes were simulated with two mechanisms, with and without migrations among the different σ-complexes, to determine if ring migrations prior to C-H activation were influencing the rate. Both mechanisms predicted similar lifetimes for cyclopentane, cyclohexane, and, to a lesser extent, cycloheptane, suggesting ring migrations do not have a large impact on the rate of C-H activation for these cycloalkanes. For cyclooctane, the inclusion of ring migrations in the reaction mechanism led to a more accurate prediction of the lifetime, indicating that ring migrations did have an effect on the rate of C-H activation for this alkane, and that migration among the σ-complexes is faster than the C-H activation for this larger cycloalkane.

5.
Appl Spectrosc ; 69(5): 519-24, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25811673

RESUMEN

The photochemistry and photophysics of metal carbonyl compounds (W(CO)6, Cp*Rh(CO)2 (Cp* = η(5)-C5Me5), and fac-[Re(CO)3(4,4'-bpy)2Br] [bpy = bipyridine]) have been examined on the nanosecond timescale using a time-resolved infrared spectrometer with an external cavity quantum cascade laser (QCL) as the infrared source. We show the photochemistry of W(CO)6 in alkane solution is easily monitored, and very sensitive measurements are possible with this approach, meaning it can monitor small transients with absorbance changes less than 10(-6) ΔOD. The C-H activation of Cp*Rh(CO)(C6H12) to form Cp*Rh(CO)(C6H11)H occurs within the first few tens of nanoseconds following photolysis, and we demonstrate that kinetics obtained following deconvolution are in excellent agreement with those measured using an ultrafast laser-based spectrometer. We also show that the high flux and tunability of QCLs makes them suited for solid-state and time-resolved measurements.

6.
Dalton Trans ; 40(38): 9672-8, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-21735008

RESUMEN

Herein we report the synthesis and photophysical study of tris-heteroleptic complexes of the general formula IrLL'(acac), where L and L' are two differently substituted 2-phenylpyridines (ppyH) and acacH is 2,4-pentanedione, using a combinatorial approach that could be employed for many ligand combinations. The tris-heteroleptic complexes and the analogous bis-heteroleptic complexes of the form IrL(2)(acac) have been studied by a combination of absorption and photoluminescence spectroscopies in conjunction with modelling by DFT and TD-DFT to elucidate the nature and location of the excited state in the novel species.


Asunto(s)
Iridio/química , Compuestos Organometálicos/síntesis química , Pentanonas/química , Piridinas/química , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/química , Procesos Fotoquímicos , Teoría Cuántica , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA