Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Small ; 19(28): e2207809, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37029458

RESUMEN

In situ and micro-scale visualization of electrochemical reactions and multiphase transports on the interface of porous transport electrode (PTE) materials and solid polymer electrolyte (SPE) has been one of the greatest challenges for electrochemical energy conversion devices, such as proton exchange membrane electrolyzer cells (PEMECs), CO2 reduction electrolyzers, PEM fuel cells, etc. Here, an interface-visible characterization cell (IV-CC) is developed to in situ visualize micro-scaled and rapid electrochemical reactions and transports in PTE/SPE interfaces. Taking the PEMEC of a green hydrogen generator as a study case, the unanticipated local gas blockage, micro water droplets, and their evolution processes are successfully visualized on PTE/PEM interfaces in a practical PEMEC device, indicating the existence of unconventional reactant supply pathways in PEMs. Further comprehensive results reveal that PEM water supplies to reaction interfaces are significantly impacted with current densities. These results provide critical insights about the reaction interface optimization and mass transport enhancement in various electrochemical energy conversion devices.

2.
ACS Appl Mater Interfaces ; 15(29): 34750-34763, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37459180

RESUMEN

Cost reduction and fast scale-up of electrolyzer technologies are essential for decarbonizing several crucial branches of industry. For polymer electrolyte water electrolysis, this requires a dramatic reduction of the expensive and scarce iridium-based catalyst, making its efficient utilization a key factor. The interfacial properties between the porous transport layer (PTL) and the catalyst layer (CL) are crucial for optimal catalyst utilization. Therefore, it is essential to understand the relationship between this interface and electrochemical performance. In this study, we fabricated a matrix of two-dimensional interface layers with a well-known model structure, integrating them as an additional layer between the PTL and the CL. By characterizing the performance and conducting an in-depth analysis of the overpotentials, we were able to estimate the catalyst utilization at different current densities, correlating them to the geometric properties of the model PTLs. We found that large areas of the CL become inactive at increasing current density either due to dry-out, oxygen saturation (under the PTL), or the high resistance of the CL away from the pore edges. We experimentally estimated the water penetration in the CL under the PTL to be ≈20 µm. Experimental results were corroborated using a 3D-multiphysics model to calculate the current distribution in the CL and estimate the impact of membrane dry-out. Finally, we observed a strong pressure dependency on performance and high-frequency resistance, which indicates that with the employed model PTLs, a significant gas phase accumulates in the CL under the lands, hindering the distribution of liquid water. The findings of this work can be extrapolated to improve and engineer PTLs with advanced interface properties, helping to reach the required target goals in cost and iridium loadings.

3.
Nat Commun ; 14(1): 7605, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37989737

RESUMEN

The electrochemical reduction of carbon dioxide to formic acid is a promising pathway to improve CO2 utilization and has potential applications as a hydrogen storage medium. In this work, a zero-gap membrane electrode assembly architecture is developed for the direct electrochemical synthesis of formic acid from carbon dioxide. The key technological advancement is a perforated cation exchange membrane, which, when utilized in a forward bias bipolar membrane configuration, allows formic acid generated at the membrane interface to exit through the anode flow field at concentrations up to 0.25 M. Having no additional interlayer components between the anode and cathode this concept is positioned to leverage currently available materials and stack designs ubiquitous in fuel cell and H2 electrolysis, enabling a more rapid transition to scale and commercialization. The perforated cation exchange membrane configuration can achieve >75% Faradaic efficiency to formic acid at <2 V and 300 mA/cm2 in a 25 cm2 cell. More critically, a 55-hour stability test at 200 mA/cm2 shows stable Faradaic efficiency and cell voltage. Technoeconomic analysis is utilized to illustrate a path towards achieving cost parity with current formic acid production methods.

4.
ACS Appl Mater Interfaces ; 14(7): 9002-9012, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35142208

RESUMEN

For a proton exchange membrane electrolyzer cell (PEMEC), conditioning is an essential process to enhance its performance, reproducibility, and economic efficiency. To get more insights into conditioning, a PEMEC with Ir-coated gas diffusion electrode (IrGDE) was investigated by electrochemistry and in situ visualization characterization techniques. The changes of polarization curves, electrochemical impedance spectra (EIS), and bubble dynamics before and after conditioning are analyzed. The polarization curves show that the cell efficiency increased by 9.15% at 0.4 A/cm2, and the EIS and Tafel slope results indicate that both the ohmic and activation overpotential losses decrease after conditioning. The visualization of bubble formation unveils that the number of bubble sites increased greatly from 14 to 29 per pore after conditioning, at the same voltage of 1.6 V. Under the same current density of 0.2 A/cm2; the average bubble detachment size decreased obviously from 35 to 25 µm. The electrochemistry and visualization characterization results jointly unveiled the increase of reaction sites and the surface oxidation on the IrGDE during conditioning, which provides more insights into the conditioning and benefits for the future GDE design and optimization.

5.
J Phys Chem B ; 126(7): 1539-1550, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35138853

RESUMEN

Understanding the local environment of the metal atoms in salt melts is important for modeling the properties of melts and predicting their behavior and thus helping enable the development of technologies such as molten salt reactors and solar-thermal power systems and new approaches to recycling rare-earth metals. Toward that end, we have developed an in situ approach for measuring the coordination of metals in molten salt coupling X-ray absorption spectroscopy (XAS) and Raman spectroscopy. Our approach was demonstrated for two salt mixtures (1.9 and 5 mol % SrCl2 in NaCl, 0.8 and 5 mol % ZrF4 in LiF) at up to 1100 °C. Near-edge (X-ray absorption near-edge structure, XANES) and extended X-ray absorption fine structure (EXAFS) spectra were measured. The EXAFS response was modeled using ab initio FEFF calculations. Strontium's first shell is observed to be coordinated with chlorine (Sr2+-Cl-) and zirconium's first shell is coordinated by fluorine (Zr4+-F-), both having coordination numbers that decrease with increasing temperature. Multiple zirconium complexes are believed to be present in the melt, which may interfere and distort the EXAFS spectra and result in an anomalously low zirconium first shell coordination number. The use of boron nitride (BN) powder as a salt diluent for XAFS measurements was found to not interfere with measurements and thus can be used for investigations of such systems.

6.
ACS Appl Polym Mater ; 2(11): 4559-4569, 2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38434177

RESUMEN

Bipolar membranes (BPMs) are the enabling component of many promising electrochemical devices used for separation and energy conversion. Here, we describe the development of high-performance BPMs, including two-dimensional BPMs (2D BPMs) prepared by hot-pressing two preformed membranes and three-dimensional BPMs (3D BPMs) prepared by electrospinning ionomer solutions and polyethylene oxide. Graphene oxide (GOx) was introduced into the BPM junction as a water-dissociation catalyst. We assessed electrochemical performance of the prepared BPMs by voltage-current (V-I) curves and galvanostatic electrochemical impedance spectroscopy. We found the optimal GOx loading in 2D BPMs to be 100 µg cm-2, which led to complete coverage of GOx at the interface. The integration of GOx beyond this loading moderately improved electrochemical performance but significantly compromised mechanical strength. GOx-catalyzed 2D BPMs showed comparable performance with a commercially available Fumasep BPM at current densities up to 500 mA cm-2. The 3D BPMs exhibited even better performance: lower resistance and higher efficiency for water dissociation and substantially higher stability under repeated cycling up to high current densities. The improved electrochemical performance and mechanical stability of the 3D BPMs make them suitable for incorporation into CO2 electrolysis devices where high current densities are necessary.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA