Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Neurochem Res ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834846

RESUMEN

Neuroinflammation and endothelial cell apoptosis are prominent features of blood-brain barrier (BBB) disruption, which have been described in Alzheimer's disease (AD) and can predict cognitive decline. Recent reports revealed vascular ß-amyloid (Aß) deposits, Muller cell degeneration and microglial dysfunction in the retina of AD patients. However, there has been no in-depth research on the roles of inflammation, retinal endothelial cell apoptosis, and blood-retinal barrier (BRB) damage in AD retinopathy. We found that Raddeanin A (RDA) could improve pathological and cognitive deficits in a mouse model of Alzheimer's disease by targeting ß-amyloidosis, However, the effects of RDA on AD retinal function require further study. To clarify whether RDA inhibits inflammation and apoptosis and thus improves BRB function in AD-related retinopathy. In vitro we used Aß-treated HRECs and MIO-M1 cells, and in vivo we used 3×Tg-AD mice to investigate the effect of RDA on BRB in AD-related retinopathy. We found that RDA could improve BRB function in AD-related retinopathy by inhibiting NLRP3-mediated inflammation and suppressing Wnt/ß-catenin pathway-mediated apoptosis, which is expected to improve the pathological changes in AD-related retinopathy and the quality of life of AD patients.

2.
Nutr Neurosci ; 26(1): 11-24, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34927571

RESUMEN

OBJECTIVES: Parkinson's disease (PD) is the second most common neurodegenerative disease. Chlorogenic acid (CGA) is a polyphenolic substance derived from various medicinal plants. Although CGA is reported to have potential anti-PD effect, the beneficial effect and the underlying mechanism remain unclear. In this study, we aimed to further investigate the protective effect and clarify the mechanism of action of CGA in Caenorhabditis elegans (C. elegans) models of PD. METHODS: Measurements of a-synuclein aggregation, movement disorders, and lipid, ROS and malondialdehyde (MDA) contents were observed in NL5901 nematodes. Determinations of dopamine (DA) neuron degeneration, food perception, and ROS content were performed in 6-OHDA-exposed BZ555 nematodes. The autophagy activation of CGA was monitored using DA2123 and BC12921 nematodes. Meanwhile, RNAi technology was employed to knockdown the autophagy-related genes and investigate whether the anti-PD effect of CGA was associated with autophagy induction in C. elegans. RESULTS: CGA significantly reduced α-synuclein aggregation, improved motor disorders, restored lipid content, and decreased ROS and MDA contents in NL5901 nematodes. Meanwhile, CGA inhibited DA neuron-degeneration and improved food-sensing behavior in 6-OHDA-exposed BZ555 nematodes. In addition, CGA increased the number of GFP::LGG-1 foci in DA2123 nematodes and degraded p62 protein in BC12921 nematodes. Meanwhile, CGA up-regulated the expression of autophagy-related genes in NL5901 nematodes. Moreover, the anti-PD effect of CGA was closely related to autophagy induction via increasing the expression of autophagy-related genes, including unc-51, bec-1, vps-34, and lgg-1. CONCLUSIONS: The present study indicates that CGA exerts neuroprotective effect in C. elegans via autophagy induction.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Animales , Enfermedad de Parkinson/metabolismo , Caenorhabditis elegans , Ácido Clorogénico/farmacología , Ácido Clorogénico/metabolismo , Animales Modificados Genéticamente , Enfermedades Neurodegenerativas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Oxidopamina , Degeneración Nerviosa , Autofagia , Lípidos , Neuronas Dopaminérgicas , Modelos Animales de Enfermedad
3.
Phytother Res ; 37(10): 4639-4654, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37394882

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a prevalent neurodegenerative disorder without an effective cure. Natural products, while showing promise as potential therapeutics for AD, remain underexplored. AIMS: This study was conducted with the goal of identifying potential anti-AD candidates from natural sources using Caenorhabditis elegans (C. elegans) AD-like models and exploring their mechanisms of action. MATERIALS & METHODS: Our laboratory's in-house herbal extract library was utilized to screen for potential anti-AD candidates using the C. elegans AD-like model CL4176. The neuroprotective effects of the candidates were evaluated in multiple C. elegans AD-like models, specifically targeting Aß- and Tau-induced pathology. In vitro validation was conducted using PC-12 cells. To investigate the role of autophagy in mediating the anti-AD effects of the candidates, RNAi bacteria and autophagy inhibitors were employed. RESULTS: The ethanol extract of air-dried fruits of Luffa cylindrica (LCE), a medicine-food homology species, was found to inhibit Aß- and Tau-induced pathology (paralysis, ROS production, neurotoxicity, and Aß and pTau deposition) in C. elegans AD-like models. LCE was non-toxic and enhanced C. elegans' health. It was shown that LCE activates autophagy and its anti-AD efficacy is weakened with the RNAi knockdown of autophagy-related genes. Additionally, LCE induced mTOR-mediated autophagy, reduced the expression of AD-associated proteins, and decreased cell death in PC-12 cells, which was reversed by autophagy inhibitors (bafilomycin A1 and 3-methyladenine). DISCUSSION: LCE, identified from our natural product library, emerged as a valuable autophagy enhancer that effectively protects against neurodegeneration in multiple AD-like models. RNAi knockdown of autophagy-related genes and cotreatment with autophagy inhibitors weakened its anti-AD efficacy, implying a critical role of autophagy in mediating the neuroprotective effects of LCE. CONCLUSION: Our findings highlight the potential of LCE as a functional food or drug for targeting AD pathology and promoting human health.


Asunto(s)
Enfermedad de Alzheimer , Proteínas de Caenorhabditis elegans , Luffa , Fármacos Neuroprotectores , Animales , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Luffa/metabolismo , Péptidos beta-Amiloides/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Frutas/metabolismo , Autofagia , Modelos Animales de Enfermedad , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/farmacología
4.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36614259

RESUMEN

The spinal cord and the brain form the central nervous system (CNS), which is the most important part of the body. However, spinal cord injury (SCI) caused by external forces is one of the most difficult types of neurological injury to treat, resulting in reduced or even absent motor, sensory and autonomic functions. It leads to the reduction or even disappearance of motor, sensory and self-organizing nerve functions. Currently, its incidence is increasing each year worldwide. Therefore, the development of treatments for SCI is urgently needed in the clinic. To date, surgery, drug therapy, stem cell transplantation, regenerative medicine, and rehabilitation therapy have been developed for the treatment of SCI. Among them, regenerative biomaterials that use tissue engineering and bioscaffolds to transport cells or drugs to the injured site are considered the most promising option. In this review, we briefly introduce SCI and its molecular mechanism and summarize the application of biomaterials in the repair and regeneration of tissue in various models of SCI. However, there is still limited evidence about the treatment of SCI with biomaterials in the clinic. Finally, this review will provide inspiration and direction for the future study and application of biomaterials in the treatment of SCI.


Asunto(s)
Materiales Biocompatibles , Traumatismos de la Médula Espinal , Humanos , Materiales Biocompatibles/uso terapéutico , Traumatismos de la Médula Espinal/tratamiento farmacológico , Médula Espinal , Medicina Regenerativa , Trasplante de Células Madre , Regeneración Nerviosa
5.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38003724

RESUMEN

Alzheimer's disease (AD) presents a significant challenge to global healthcare systems, with current treatments offering only modest relief and often bringing unwanted side effects, necessitating the exploration of more effective and safer drugs. In this study, we employed the Caenorhabditis elegans (C. elegans) model, specifically the AD-like CL4176 strain expressing the human Aß(1-42) protein, to investigate the potential of Reineckia carnea extract and its fractions. Our results showed that the Reineckia carnea ether fraction (REF) notably diminished the paralysis rates of CL4176 worms. Additionally, REF also attenuated the neurotoxicity effects prompted by Tau proteins in the BR5270 worms. Moreover, REF was observed to counteract the accumulation of Aß and pTau proteins and their induced oxidative stress in C. elegans AD-like models. Mechanistic studies revealed that REF's benefits were associated with the induction of autophagy in worms; however, these protective effects were nullified when autophagy-related genes were suppressed using RNAi bacteria. Together, these findings highlight Reineckia carnea ether fraction as a promising candidate for AD treatment, warranting further investigation into its autophagy-inducing components and their molecular mechanisms.


Asunto(s)
Enfermedad de Alzheimer , Proteínas de Caenorhabditis elegans , Animales , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Caenorhabditis elegans/metabolismo , Animales Modificados Genéticamente , Péptidos beta-Amiloides/metabolismo , Éter/farmacología , Proteínas de Caenorhabditis elegans/metabolismo , Éteres de Etila/metabolismo , Éteres de Etila/farmacología , Éteres de Etila/uso terapéutico , Éteres/farmacología , Modelos Animales de Enfermedad
6.
Clin Immunol ; 244: 109093, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35944881

RESUMEN

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Emerging evidence indicates that the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome is activated, which results in a cytokine storm at the late stage of COVID-19. Autophagy regulation is involved in the infection and replication of SARS-CoV-2 at the early stage and the inhibition of NLRP3 inflammasome-mediated lung inflammation at the late stage of COVID-19. Here, we discuss the autophagy regulation at different stages of COVID-19. Specifically, we highlight the therapeutic potential of autophagy activators in COVID-19 by inhibiting the NLRP3 inflammasome, thereby avoiding the cytokine storm. We hope this review provides enlightenment for the use of autophagy activators targeting the inhibition of the NLRP3 inflammasome, specifically the combinational therapy of autophagy modulators with the inhibitors of the NLRP3 inflammasome, antiviral drugs, or anti-inflammatory drugs in the fight against COVID-19.


Asunto(s)
COVID-19 , Neumonía , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antivirales/farmacología , Autofagia , Síndrome de Liberación de Citoquinas , Humanos , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , SARS-CoV-2
7.
Chemistry ; 28(52): e202201767, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-35816126

RESUMEN

As novel generated 2D materials, metal-organic layers (MOLs) have recently emerged as a potential platform for photocatalytic CO2 reduction reaction (PCO2 RR). Such 2D structures negate the blemish of low-density catalytic sites and low electron transmission efficiency on the surface of metal organic frameworks (MOFs), while retaining the advantage of low expenditure when using earth-abundant metal nodes and meritorious applicability in the PCO2 RR. Herein, it is reported that the 2D ultrathin layer material with bis-metallic catalytic sites (Ni-O metal node and the Ni-N metal site) from bidentate ligand 2,2'-bipyridine-5,5'-dicarboxylate (H2 bpydc) and nickel(II) remarkably boosts the visible light-driven PCO2 RR performance with a CO yield of 2400 mmol g-1 for 18 h and a selectivity up to 99 %. Consequently, the effects of morphology, catalytic sites and intrinsic properties on PCO2 RR efficiency have been investigated in detail. In this context, the ultrathin layer structure has been elucidated as the key point to facilitate electron transfer efficiency. Notably, the bis-metallic catalytic sites with reasonable distance between two adjacent metals presumably induce synergistic effect and offer a guiding ideology for further designing high performance photocatalysts.

8.
Chemistry ; 28(52): e202202650, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36066431

RESUMEN

Invited for the cover of this issue is the group of Liang-Nian He at Nankai University. The image depicts that 2D ultrathin metal organic layers (MOLs) with bis-metallic catalytic sites make an efficient photocatalyst resulting in efficient and selective visible-light-driven CO2 reduction. Read the full text of the article at 10.1002/chem.202201767.

9.
Zhongguo Zhong Yao Za Zhi ; 47(23): 6438-6449, 2022 Dec.
Artículo en Zh | MEDLINE | ID: mdl-36604890

RESUMEN

Colquhounia Root Tablets, prepared from Tripterygium, is effective for rheumatoid arthritis, diabetic nephropathy, and membranous nephropathy. However, the adverse reactions, such as liver injury, nausea, and vomiting, limit its application. This study aims to evaluate the advantages and risk of Colquhounia Root Tablets and its key active components in the treatment of rheumatoid arthritis, diabetic nephropathy, and membranous nephropathy and explore the potential mechanism in treating different diseases based on in vitro efficacy and toxicity assessment and biomolecular network analysis. First, the components of Colquhounia Root Tablets absorbed in blood were detected via ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry, and the influence of Colquhounia Root Tablets and its key components triptolide and celastrol on viability of human hepatocyte L02, human rheumatoid fibroblast-like synovial cell MH7 A, human renal tubular epithelial cell HK-2, and mouse podocyte MPC-5 was detected by cell counting kit 8(CCK8) assay. Then the expression of inflammatory cytokines of MH7 A and HK-2 cells was detected by enzyme-linked immunosorbent assay(ELISA). Moreover, the expression of nephrin and podocin in MPC-5 cells was measured by Western blot, and the expression of cytoskeletal protein by immunofluorence assay. Candidate targets of components from Colquhounia Root Tablets absorbed in blood were retrieved from TCMIP v2.0, and targets of the three diseases from GEO. The "disease-related genes-drug targets" network was constructed based on STRING, followed by pathway enrichment. Finally, molecular docking was performed by AutoDock Vina to explore the binding affinity of triptolide and celastrol with putative targets in the key signaling pathway. RESULTS:: showed that Colquhounia Root Tablets, triptolide, and celastrol can obviously reduce the levels of inflammatory cytokines in supernatant of MH7 A and HK-2 cells and enhance the expression of nephrin and podocin in MPC-5 cells. In addition, triptolide had the strongest toxicity to L02 cells, while Huobahuagen Tablets had the least toxicity to hepatocytes. Network analysis revealed that Colquhounia Root Tablets may intervene the three diseases through PI3 K/HIF1α/NOS signaling pathway. Both triptolide and celastrol had high binding affinities to corresponding targets in this signaling pathway. In conclusion, Colquhounia Root Tablets exerts similar effects on rheumatoid arthritis, diabetic nephropathy, and membranous nephropathy to triptolide and celastrol, but the toxicity was lower. PI3 K/HIF1α/NOS signaling pathway may be the common pathway of Colquhounia Root Tablets in the treatment of the three diseases.


Asunto(s)
Artritis Reumatoide , Nefropatías Diabéticas , Medicamentos Herbarios Chinos , Glomerulonefritis Membranosa , Humanos , Animales , Ratones , Simulación del Acoplamiento Molecular , Citocinas , Artritis Reumatoide/tratamiento farmacológico , Comprimidos , Medicamentos Herbarios Chinos/uso terapéutico
10.
Pharmacol Res ; 166: 105491, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33582247

RESUMEN

Acute erythroid leukemia (AEL) is a rare and aggressive hematologic malignancy with no specific treatment. Sanguisorba officinalis L. (S. officinalis), a well-known traditional Chinese medicine, possesses potent anticancer activity. However, the active components of S. officinalis against AEL and the associated molecular mechanisms remain unknown. In this study, we predicted the anti-AML effect of S. officinalis based on network pharmacology. Through the identification of active components of S. officinalis, we found that 3,8-Di-O-methylellagic acid 2-O-glucoside (DMAG) not only significantly inhibited the proliferation of erythroleukemic cell line HEL, but also induced their differentiation to megakaryocytes. Furthermore, we demonstrated that DMAG could prolong the survival of AEL mice model. Whole-transcriptome sequencing was performed to elucidate the underlying molecular mechanisms associated with anti-AEL effect of DMAG. The results showed that the total of 68 miRNAs, 595 lncRNAs, 4030 mRNAs and 35 circRNAs were significantly differentially expressed during DMAG induced proliferation inhibition and differentiation of HEL cells. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the differentially expressed miRNAs, lncRNAs, mRNAs and circRNAs were mainly involved in metabolic, HIF-1, MAPK, Notch pathway and apoptosis. The co-expression networks showed that miR-23a-5p, miR-92a-1-5p, miR-146b and miR-760 regulatory networks were crucial for megakaryocyte differentiation induced by DMAG. In conclusion, our results suggest that DMAG, derived from S. officinalis might be a potent differentiation inducer of AEL cells and provide important information on the underlying mechanisms associated with its anti-AEL activity.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Leucemia Eritroblástica Aguda/tratamiento farmacológico , Sanguisorba , Antineoplásicos Fitogénicos/química , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Humanos , Leucemia Eritroblástica Aguda/genética , Leucemia Eritroblástica Aguda/patología , Farmacología en Red , Sanguisorba/química , Transcriptoma/efectos de los fármacos
11.
Pharmacol Res ; 170: 105697, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34062240

RESUMEN

With the increase in human lifespan, population aging is one of the major problems worldwide. Aging is an irreversible progressive process that affects humans via multiple factors including genetic, immunity, cellular oxidation and inflammation. Progressive neuroinflammation contributes to aging, cognitive malfunction, and neurodegenerative diseases. However, precise mechanisms or drugs targeting age-related neuroinflammation and cognitive impairment remain un-elucidated. Traditional herbal plants have been prescribed in many Asian countries for anti-aging and the modulation of aging-related symptoms. In general, herbal plants' efficacy is attributed to their safety and polypharmacological potency via the systemic manipulation of the body system. Radix polygalae (RP) is a herbal plant prescribed for anti-aging and the relief of age-related symptoms; however, its active components and biological functions remained un-elucidated. In this study, an active methanol fraction of RP containing 17 RP saponins (RPS), was identified. RPS attenuates the elevated C3 complement protein in aged mice to a level comparable to the young control mice. The active RPS also restates the aging gut microbiota by enhancing beneficial bacteria and suppressing harmful bacteria. In addition, RPS treatment improve spatial reference memory in aged mice, with the attenuation of multiple molecular markers related to neuroinflammation and aging. Finally, the RPS improves the behavior and extends the lifespan of C. elegans, confirming the herbal plant's anti-aging ability. In conclusion, through the mouse and C. elegas models, we have identified the beneficial RPS that can modulate the aging process, gut microbiota diversity and rectify several aging-related phenotypes.


Asunto(s)
Envejecimiento/efectos de los fármacos , Caenorhabditis elegans/efectos de los fármacos , Complemento C3/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Polygala , Saponinas/farmacología , Factores de Edad , Envejecimiento/genética , Envejecimiento/inmunología , Envejecimiento/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo , Longevidad/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias/genética , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/prevención & control , Fármacos Neuroprotectores/aislamiento & purificación , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/aislamiento & purificación , Raíces de Plantas , Polygala/química , Saponinas/aislamiento & purificación , Memoria Espacial/efectos de los fármacos , Transcriptoma
12.
Phytother Res ; 35(2): 954-973, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32893437

RESUMEN

Blood-brain barrier (BBB) dysfunction has been implicated in Alzheimer's disease (AD) and is closely linked to the release of proinflammatory cytokines in brain capillary endothelial cells. We have previously reported that lychee seed polyphenols (LSP) exerted anti-neuroinflammatory effect. In this study, we aimed to explore the protective effect of LSP on BBB integrity. The monolayer permeability of bEnd.3 cells, and the mRNA level and protein expression of tight junction proteins (TJs), including Claudin 5, Occludin, and ZO-1, were examined. In addition, the inhibition of Aß(25-35)-induced NLRP3 inflammasome activation, and the autophagy induced by LSP were investigated by detecting the expression of NLRP3, caspase-1, ASC, LC3, AMPK, mTOR, and ULK1. Furthermore, the cognitive function and the expression of TJs, NLRP3, caspase-1, IL-1ß, and p62 were determined in APP/PS1 mice. The results showed that LSP significantly decreased the monolayer permeability and inhibited the NLRP3 inflammasome in Aß(25-35)-induced bEnd3 cells. In addition, LSP induced autophagy via the AMPK/mTOR/ULK1 pathway in bEnd.3 cells, and improved the spatial learning and memory function, increased the TJs expression, and inhibited the expression of NLRP3, caspase-1, IL-1ß, and p62 in APP/PS1 mice. Therefore, LSP protects BBB integrity in AD through inhibiting Aß(25-35)-induced NLRP3 inflammasome activation via the AMPK/mTOR/ULK1-mediated autophagy.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Autofagia/efectos de los fármacos , Barrera Hematoencefálica/efectos de los fármacos , Inflamasomas/efectos de los fármacos , Litchi/química , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Polifenoles/uso terapéutico , Semillas/química , Animales , Masculino , Ratones , Ratones Transgénicos , Polifenoles/farmacología , Transfección
13.
Pharmacol Res ; 153: 104660, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31982489

RESUMEN

Multidrug resistance (MDR) represents an obstacle in anti-cancer therapy. MDR is caused by multiple mechanisms, involving ATP-binding cassette (ABC) transporters such as P-glycoprotein (P-gp), which reduces intracellular drug levels to sub-therapeutic concentrations. Therefore, sensitizing agents retaining effectiveness against apoptosis- or drug-resistant cancers are desired for the treatment of MDR cancers. The sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) pump is an emerging target to overcome MDR, because of its continuous expression and because the calcium transport function is crucial to the survival of tumor cells. Previous studies showed that SERCA inhibitors exhibit anti-cancer effects in Bax-Bak-deficient, apoptosis-resistant and MDR cancers, whereas specific P-gp inhibitors reverse the MDR phenotype of cancer cells by blocking efflux of chemotherapeutic agents. Here, we unraveled SERCA and P-gp as double targets of the triterpenoid, celastrol to reverse MDR. Celastrol inhibited both SERCA and P-gp to stimulate calcium-mediated autophagy and ATP depletion, thereby induced collateral sensitivity in MDR cancer cells. In vivo studies further confirmed that celastrol suppressed tumor growth and metastasis by SERCA-mediated calcium mobilization. To the best of our knowledge, our findings demonstrate collateral sensitivity in MDR cancer cells by simultaneous inhibition of SERCA and P-gp for the first time.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Adenosina Trifosfato/antagonistas & inhibidores , Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/antagonistas & inhibidores , Triterpenos/farmacología , Animales , Autofagia/genética , Proteína 7 Relacionada con la Autofagia/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones Endogámicos C57BL , Triterpenos Pentacíclicos , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Pharmacol Res ; 147: 104396, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31404628

RESUMEN

Non-small cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancers. Our previous studies have proven that Trillium tschonoskii Maxim. (TTM), a traditional Chinese medicine, possesses potent anti-tumor effect. However, the detailed components and molecular mechanism of TTM in anti-NSCLC are still unknown. In the present experiment, polyphyllin VI (PPVI) was successfully isolated from TTM with guidance of the anti-proliferative effect in A549 cells, and the cell death of PPVI treated A549 and H1299 cells was closely linked with the increased intracellular ROS levels. In addition, PPVI induced apoptosis by promoting the protein expression of Bax/Bcl2, caspase-3 and caspase-9, and activated autophagy by improving LC3 II conversion and GFP-LC3 puncta formation in A549 and H1299 cells. The mechanism study found that the activity of mTOR which regulates cell growth, proliferation and autophagy was significantly suppressed by PPVI. Accordingly, the PI3K/AKT and MEK/ERK pathways positively regulating mTOR were inhibited, and AMPK negatively regulating mTOR was activated. In addition, the downstream of mTOR, ULK1 at Ser 757 which downregulates autophagy was inhibited by PPVI. The apoptotic cell death induced by PPVI was confirmed, and it was significantly suppressed by the overexpression of AKT, ERK and mTOR, and the induced autophagic cell death which was depended on the Atg7 was decreased by the inhibitors, such as LY294002 (LY), Bafilomycin A1 (Baf), Compound C (CC) and SBI-0206965 (SBI). Furthermore, the mTOR signaling pathway was regulated by the increased ROS as the initial signal in A549 and H1299 cells. Finally, the anti-tumor growth activity of PPVI in vivo was validated in A549 bearing athymic nude mice. Taken together, our data have firstly demonstrated that PPVI is the main component in TTM that exerts the anti-proliferative effect by inducing apoptotic and autophagic cell death in NSCLC via the ROS-triggered mTOR signaling pathway, and PPVI may be a promising candidate for the treatment of NSCLC in future.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Saponinas/farmacología , Saponinas/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Muerte Celular Autofágica/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Ratones Desnudos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Trillium
15.
Int J Mol Sci ; 19(7)2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-30036972

RESUMEN

Amyloid-ß (Aß) is commonly recognized as the most important factor that results in neuronal cell death and accelerates the progression of Alzheimer's disease (AD). Increasing evidence suggests that microglia activated by Aß release an amount of neurotoxic inflammatory cytokines that contribute to neuron death and aggravate AD pathology. In our previous studies, we found that lychee seed fraction (LSF), an active fraction derived from the lychee seed, could significantly improve the cognitive function of AD rats and inhibit Aß-induced neuroinflammation in vitro, and decrease neuronal injuries in vivo and in vitro. In the current study, we aimed to isolate and identify the specific components in LSF that were responsible for the anti-neuroinflammation effect using preparative high performance liquid chromatography (pre-HPLC), liquid chromatography-mass spectrometry (LC-MS), and nuclear magnetic resonance (NMR) methods. To this end, we confirmed two polyphenols including catechin and procyanidin A2 that could improve the morphological status of BV-2 cells and suppress the release, mRNA levels, and protein expression of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) through downregulating the nuclear factor-κB (NF-κB) signaling pathway using ELISA, RT-PCR, and Western blotting methods. Furthermore, catechin and procyanidin A2 could inhibit Aß-induced apoptosis in BV-2 cells by upregulating Bcl-2 and downregulating Bax protein expression. Therefore, the current study illustrated the active substances in lychee seed, and first reported that catechin and procyanidin A2 could suppress neuroinflammation in Aß-induced BV-2 cells, which provides detailed insights into the molecular mechanism of catechin and procyanidin A2 in the neuroprotective effect, and their further validations of anti-neuroinflammation in vivo is also essential in future research.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Inflamación/tratamiento farmacológico , Litchi/química , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Polifenoles/química , Polifenoles/uso terapéutico , Semillas/química , Animales , Apoptosis/efectos de los fármacos , Catequina/metabolismo , Línea Celular , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Ratones , FN-kappa B/metabolismo , Neuronas/inmunología , Proantocianidinas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
16.
Pharmacol Res ; 115: 25-44, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27838509

RESUMEN

Pathogenesis of neurodegenerative diseases such as Parkinson's disease (PD) and Huntington's disease (HD) are closely related to the formation of protein aggregates and inclusion body. For instance, active autophagic components from Chinese herbal medicines (CHMs) are highlighted to modulate neurodegeneration via degradation of disease proteins. In this study, the neuroprotective effect of the purified Hedera helix (HH) fraction containing both hederagenin and α-hederin, is confirmed by the improvement of motor deficits in PD mice model. Furthermore, hederagenin and α-hederin derived from HH are confirmed as novel autophagic enhancers. Both compounds reduce the protein level of mutant huntingtin with 74 CAG repeats and A53T α-synuclein, and inhibit the oligomerization of α-synuclein and inclusion formation of huntingtin, via AMPK-mTOR dependent autophagy induction. Both hederagenin and α-hederin induce autophagy and promote the degradation of neurodegenerative mutant disease proteins in vitro, suggesting the therapeutic roles of HH in neurodegenerative disorders.


Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Ácido Oleanólico/análogos & derivados , Saponinas/farmacología , Adenilato Quinasa/metabolismo , Animales , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Femenino , Hedera/química , Proteína Huntingtina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedades Neurodegenerativas/metabolismo , Ácido Oleanólico/farmacología , Células PC12 , Ratas , Serina-Treonina Quinasas TOR/metabolismo , alfa-Sinucleína/metabolismo
17.
Molecules ; 21(3): 359, 2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26999089

RESUMEN

Autophagy is a universal catabolic cellular process for quality control of cytoplasm and maintenance of cellular homeostasis upon nutrient deprivation and environmental stimulus. It involves the lysosomal degradation of cellular components such as misfolded proteins or damaged organelles. Defects in autophagy are implicated in the pathogenesis of diseases including cancers, myopathy, neurodegenerations, infections and cardiovascular diseases. In the recent decade, traditional drugs with new clinical applications are not only commonly found in Western medicines, but also highlighted in Chinese herbal medicines (CHM). For instance, pharmacological studies have revealed that active components or fractions from Chaihu (Radix bupleuri), Hu Zhang (Rhizoma polygoni cuspidati), Donglingcao (Rabdosia rubesens), Hou po (Cortex magnoliae officinalis) and Chuan xiong (Rhizoma chuanxiong) modulate cancers, neurodegeneration and cardiovascular disease via autophagy. These findings shed light on the potential new applications and formulation of CHM decoctions via regulation of autophagy. This article reviews the roles of autophagy in the pharmacological actions of CHM and discusses their new potential clinical applications in various human diseases.


Asunto(s)
Autofagia/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Medicina Tradicional China , Animales , Productos Biológicos/farmacología , Transformación Celular Neoplásica/efectos de los fármacos , Ensayos Clínicos como Asunto , Susceptibilidad a Enfermedades , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/clasificación , Metabolismo Energético/efectos de los fármacos , Humanos , Inmunomodulación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
18.
Molecules ; 21(4): 496, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27092478

RESUMEN

Drug resistance and the severe side effects of chemotherapy necessitate the development of novel anticancer drugs. Natural products are a valuable source for drug development. Scopoletin is a coumarin compound, which can be found in several Artemisia species and other plant genera. Microarray-based RNA expression profiling of the NCI cell line panel showed that cellular response of scopoletin did not correlate to the expression of ATP-binding cassette (ABC) transporters as classical drug resistance mechanisms (ABCB1, ABCB5, ABCC1, ABCG2). This was also true for the expression of the oncogene EGFR and the mutational status of the tumor suppressor gene, TP53. However, mutations in the RAS oncogenes and the slow proliferative activity in terms of cell doubling times significantly correlated with scopoletin resistance. COMPARE and hierarchical cluster analyses of transcriptome-wide mRNA expression resulted in a set of 40 genes, which all harbored binding motifs in their promoter sequences for the transcription factor, NF-κB, which is known to be associated with drug resistance. RAS mutations, slow proliferative activity, and NF-κB may hamper its effectiveness. By in silico molecular docking studies, we found that scopoletin bound to NF-κB and its regulator IκB. Scopoletin activated NF-κB in a SEAP-driven NF-κB reporter cell line, indicating that NF-κB might be a resistance factor for scopoletin. In conclusion, scopoletin might serve as lead compound for drug development because of its favorable activity against tumor cells with ABC-transporter expression, although NF-κB activation may be considered as resistance factor for this compound. Further investigations are warranted to explore the full therapeutic potential of this natural product.


Asunto(s)
Resistencia a Antineoplásicos/genética , FN-kappa B/biosíntesis , Neoplasias/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Escopoletina/administración & dosificación , Transportadoras de Casetes de Unión a ATP/biosíntesis , Transportadoras de Casetes de Unión a ATP/genética , Artemisia/química , Línea Celular Tumoral , Resistencia a Múltiples Medicamentos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Simulación del Acoplamiento Molecular , FN-kappa B/genética , Neoplasias/genética , Farmacogenética , Extractos Vegetales/química , Análisis por Matrices de Proteínas , Escopoletina/química , Transducción de Señal/efectos de los fármacos , Factor de Transcripción ReIA/biosíntesis
19.
Molecules ; 20(3): 3496-514, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25699594

RESUMEN

Mutant huntingtin aggregation is highly associated with the pathogenesis of Huntington's disease, an adult-onset autosomal dominant disorder, which leads to a loss of motor control and decline in cognitive function. Recent literature has revealed the protective role of autophagy in neurodegenerative diseases through degradation of mutant toxic proteins, including huntingtin or a-synuclein. Through the GFP-LC3 autophagy detection platform, we have  identified  neferine,  isolated  from  the  lotus  seed  embryo  of Nelumbo nucifera, which is able to induce autophagy through an AMPK-mTOR-dependent pathway. Furthermore, by overexpressing huntingtin with 74 CAG repeats (EGFP-HTT 74) in PC-12 cells, neferine reduces both the protein level and toxicity of mutant huntingtin through an autophagy-related gene 7 (Atg7)-dependent mechanism. With the variety of novel active compounds present in medicinal herbs, our current study suggests the possible protective mechanism of an autophagy inducer isolated from Chinese herbal medicine, which is crucial for its further development into a potential therapeutic agent for neurodegenerative disorders in the future.


Asunto(s)
Autofagia/efectos de los fármacos , Bencilisoquinolinas/farmacología , Medicamentos Herbarios Chinos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Enfermedad de Huntington/patología , Proteínas Mutantes/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Adulto , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Proliferación Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/química , Citometría de Flujo , Humanos , Proteína Huntingtina , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/genética , Proteínas Mutantes/genética , Proteínas del Tejido Nervioso/genética , Células PC12 , ARN Mensajero/genética , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
20.
ChemSusChem ; : e202400608, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747335

RESUMEN

A Cu/Co tandem catalysis protocol was developed to conduct the hydroformylation of olefins using CO2/H2 and PMHS (polymethylhydrosiloxane) as a readily available and environmentally friendly hydride source. This methodology was performed via a two-step approach consisting of the copper-catalyzed reduction of CO2 by hydrosilane and subsequent cobalt-promoted hydroformylation with H2 and the in situ formed CO. The optimized triphos oxide ligand, which presumably facilitates the migratory insertion of CO gives moderate to excellent yields for both terminal and internal alkenes. This earth-abundant metal catalysis provides a reliable and efficient way to afford useful aldehydes in industry using silicon by-product PMHS as hydrogen source and renewable CO2 as carbonyl source.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA