Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(24): e2309559, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38243884

RESUMEN

Hopper-shaped microcrystals, an unusual type of crystal with a large specific surface area, are promising for use in catalysis, drug delivery, and gas sensors. In contrast to well-studied inorganic hopper-shaped crystals, organic phosphorescent concave hopper-shaped microstructures are rarely reported. This study reports the synthesis of two types of organic stepped indented hopper-shaped microstructures with efficient room temperature phosphorescence (RTP) using a liquid phase self-assembly strategy. The formation mechanism is attributed to the interfacial instability induced by the concentration gradient and selective etching. Compared with flat microstructures, the stepped indented hopper-like RTP microstructures exhibit high sensitivity to oxygen. This work also demonstrates that packing the photochromic material into the concave hopper "vessel" effectively controls the switch of phosphorescence from energy transfer, expanding the potential applications of phosphorescent materials.

2.
Nat Commun ; 15(1): 4520, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806515

RESUMEN

Luminescent materials with narrowband emission show great potential for diverse applications in optoelectronics. Purely organic phosphors with room-temperature phosphorescence (RTP) have made significant success in rationally manipulating quantum efficiency, lifetimes, and colour gamut in the past years, but there is limited attention on the purity of the RTP colours. Herein we report a series of closed-loop molecules with narrowband phosphorescence by multiple resonance effect, which significantly improves the colour purity of RTP. Phosphors show narrowband phosphorescence with full width at half maxima (FWHM) of 30 nm after doping into a rigid benzophenone matrix under ambient conditions, of which the RTP efficiency reaches 51.8%. At 77 K, the FWHM of phosphorescence is only 11 nm. Meanwhile, the colour of narrowband RTP can be tuned from sky blue to green with the modification of methyl groups. Additionally, the potential applications in X-ray imaging and display are demonstrated. This work not only outlines a design principle for developing narrowband RTP materials but also makes a major step forward extending the potential applications of narrowband luminescent materials in optoelectronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA