RESUMEN
The incidence of melanoma, the most lethal form of skin cancer, has increased due to ultraviolet exposure. The treatment of advanced melanoma, particularly metastatic cases, remains challenging with poor outcomes. Targeted therapies involving BRAF/MEK inhibitors and immunotherapy based on anti-PD1/anti-CTLA4 antibodies have achieved long-term survival rates of approximately 50% for patients with advanced melanoma. However, therapy resistance and inadequate treatment response continue to hinder further breakthroughs in treatments that increase survival rates. This review provides an introduction to the molecular-level pathogenesis of melanoma and offers an overview of current treatment options and their limitations. Cells can die by either accidental or regulated cell death (RCD). RCD is an orderly cell death controlled by a variety of macromolecules to maintain the stability of the internal environment. Since the uncontrolled proliferation of tumor cells requires evasion of RCD programs, inducing the RCD of melanoma cells may be a treatment strategy. This review summarizes studies on various types of nonapoptotic RCDs, such as autophagy-dependent cell death, necroptosis, ferroptosis, pyroptosis, and the recently discovered cuproptosis, in the context of melanoma. The relationships between these RCDs and melanoma are examined, and the interplay between these RCDs and immunotherapy or targeted therapy in patients with melanoma is discussed. Given the findings demonstrating melanoma cell death in response to different stimuli associated with these RCDs, the induction of RCD shows promise as an integral component of treatment strategies for melanoma.
RESUMEN
The genetic control and signaling pathways of vascular development are not comprehensively understood. Transcription factors Islet2 (Isl2) and nr2f1b are critical for vascular growth in zebrafish, and further transcriptome analysis has revealed potential targets regulated by isl2/nr2f1b. In this study, we focused on the potential activation gene signal-transducing adaptor protein 2b (stap2b) and revealed a novel role of stap2b in vascular development. stap2b mRNA was expressed in developing vessels, suggesting stap2b plays a role in vascularization. Knocking down stap2b expression by morpholino injection or Crispr-Cas9-generated stap2b mutants caused vascular defects, suggesting a role played by stap2b in controlling the patterning of intersegmental vessels (ISVs) and the caudal vein plexus (CVP). The vessel abnormalities associated with stap2b deficiency were found to be due to dysregulated cell migration and proliferation. The decreased expression of vascular-specific markers in stap2b morphants was consistent with the vascular defects observed. In contrast, overexpression of stap2b enhanced the growth of ISVs and reversed the vessel defects in stap2b morphants. These data suggest that stap2b is necessary and sufficient to promote vascular development. Finally, we examined the interaction between stap2b and multiple signaling. We showed that stap2b regulated ISV growth through the JAK-STAT pathway. Moreover, we found that stap2b was regulated by Notch signaling to control ISV growth, and stap2b interacted with bone morphogenetic protein signaling to contribute to CVP formation. Altogether, we demonstrated that stap2b acts downstream of the isl2/nr2f1b pathway to play a pivotal role in vascular development via interaction with multiple signaling pathways.
Asunto(s)
Proteínas de Pez Cebra , Pez Cebra , Animales , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Quinasas Janus/metabolismo , Neovascularización Fisiológica/genética , Transducción de Señal/fisiología , Factores de Transcripción STAT/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismoRESUMEN
Breast cancer is a leading cause of cancer-related death worldwide, and chemoresistance often leads to poor patient outcomes. In this study, we investigated the anticancer activity of synthetic diphenyl disulfide (DPDS) in breast cancer cell lines. DPDS inhibited cellular proliferation and viability in a dose-dependent manner and reduced colony formation, an index of clonogenicity. Annexin-V and 7-AAD double staining showed that DPDS could induce the apoptosis of breast cancer cells. Western blotting of the expression of Bax p21 and its cleaved form p18 suggested the activation of p18 Bax-induced apoptosis. Furthermore, the increased expression of the autophagy marker LC3B-II indicated autophagic lysosome accumulation induced by DPDS. Our findings suggest that DPDS has potential as a candidate for treating breast cancer, and further modifications and optimizations are warranted.
Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Proteína X Asociada a bcl-2 , Neoplasias de la Mama/metabolismo , Apoptosis , Proliferación Celular , Autofagia , Línea Celular TumoralRESUMEN
Many regulators controlling arterial identity are well described; however, transcription factors that promote vein identity and vascular patterning have remained largely unknown. We previously identified the transcription factors Islet2 (Isl2) and Nr2f1b required for specification of the vein and tip cell identity mediated by notch pathway in zebrafish. However, the interaction between Isl2 and Nr2f1b is not known. In this study, we report that Nr2f2 plays minor roles on vein and intersegmental vessels (ISV) growth and dissect the genetic interactions among the three transcription factors Isl2, Nr2f1b, and Nr2f2 using a combinatorial knockdown strategy. The double knockdown of isl2/nr2f1b, isl2/nr2f2, and nr2f1b/nr2f2 showed the enhanced defects in vasculature including less completed ISV, reduced veins, and ISV cells. We further tested the genetic relationship among these three transcription factors. We found isl2 can regulate the expression of nr2f1b and nr2f2, suggesting a model where Isl2 functions upstream of Nr2f1b and Nr2f2. We hypothsized that Isl2 and Nr2f1b can function together through cis-regulatory binding motifs. In-vitro luciferase assay results, we showed that Isl2 and Nr2f1b can cooperatively enhance gene expression. Moreover, co-immunoprecipitation results indicated that Isl2 and Nr2f1b interact physically. Together, we showed that the interaction of the Nr2f1b and Nr2f2 transcription factors in combination with the Islet2 play coordinated roles in the vascular development of zebrafish.
Asunto(s)
Arterias , Proteínas con Homeodominio LIM , Factores de Transcripción , Proteínas de Pez Cebra , Pez Cebra , Animales , Arterias/crecimiento & desarrollo , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Venas , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismoRESUMEN
BACKGROUND: The aim of this study is to investigate role of Visfatin, one of the pro-inflammatory adipokines, in sepsis-induced intestinal injury and to clarify the potential mechanism. METHODS: C57BL/6 mice underwent cecal ligation and puncture (CLP) surgery to establish sepsis model in vivo. Intestinal epithelial cells were stimulated with LPS to mimic sepsis-induced intestinal injury in vitro. FK866 (the inhibitor of Visfatin) with or without XMU-MP-1 (the inhibitor of Hippo signaling) was applied for treatment. The expression levels of Visfatin, NF-κB and Hippo signaling pathways-related proteins were detected by western blot or immunohistochemistry. The intestinal cell apoptosis and intestinal injury were investigated by TUNEL staining and H&E staining, respectively. ELISA was used to determine the production of inflammatory cytokines. RESULTS: The expression of Visfatin increased in CLP mice. FK866 reduced intestinal pathological injury, inflammatory cytokines production, and intestinal cell apoptosis in sepsis mice. Meanwhile, FK866 affected NF-κB and Hippo signaling pathways. Additionally, the effects of FK866 on inflammatory response, apoptosis, Hippo signaling and NF-κB signaling were partly abolished by XMU-MP-1, the inhibitor of Hippo signaling. In vitro experiments also revealed that FK866 exhibited a protective role against LPS-induced inflammatory response and apoptosis in intestinal cells, as well as regulating NF-κB and Hippo signaling, whereas addition of XMU-MP-1 weakened the protective effects of FK866. CONCLUSION: In short, this study demonstrated that inhibition of Visfatin might alleviate sepsis-induced intestinal injury through Hippo signaling pathway, supporting a further research on Visfatin as a therapeutic target.
Asunto(s)
Nicotinamida Fosforribosiltransferasa , Sepsis , Animales , Citocinas/metabolismo , Vía de Señalización Hippo , Lipopolisacáridos , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Sepsis/metabolismoRESUMEN
Members of the Ras superfamily have been found to perform several functions leading to the development of eukaryotes. These small GTPases are divided into five major subfamilies, and their regulators can "turn on" and "turn off" signals. Recent studies have shown that this superfamily of proteins has various roles in the process of vascular development, such as vasculogenesis and angiogenesis. Here, we discuss the role of these subfamilies in the development of the vascular system in zebrafish.
Asunto(s)
Proteínas de Unión al GTP Monoméricas , Animales , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Pez Cebra/metabolismoRESUMEN
Proper growth and patterning of blood vessels are critical for embryogenesis. Chemicals or environmental hormones may interfere with vascular growth and cause developmental defects. Nitrobenzoate-based compounds have been demonstrated to have a wide range of biological and pharmacological functions, leading to the development of numerous 4-nitrobenzoate derivatives for clinical application. In this study, we tested a novel nitrobenzoate-derived compound, X8, and investigated its effects on vascular development using zebrafish as a model organism. We first determined the survival rate of embryos after the addition of exogenous X8 (0.5, 1, 3, 5, and 10 µM) to the fish medium and determined a sublethal dose of 3 µM for use in further assays. We used transgenic fish to examine the effects of X8 treatment on vascular development. At 25-32 h postfertilization (hpf), X8 treatment impaired the growth of intersegmental vessels (ISVs) and caudal vein plexuses (CVPs). Moreover, X8-treated embryos exhibited pericardial edema and circulatory defects at 60-72 hpf, suggesting the effects of X8 in vasculature. Apoptosis tests showed that the vascular defects were likely caused by the inhibition of proliferation and migration. To investigate the molecular impacts underlying the defects in the vasculature of X8-treated fish, the expression levels of vascular markers, including ephrinb2, mrc1, and stabilin, were assessed, and the decreased expression of those genes was detected, indicating that X8 inhibited the expression of vascular genes. Finally, we showed that X8 treatment disrupted exogenous GS4012-induced angiogenesis in Tg(flk:egfp) zebrafish embryos. In addition, vascular defects were enhanced during cotreatment with X8 and the VEGFR2 inhibitor SU5416, suggesting that X8 treatment causes vascular defects mediated by disruption of VEGF/VEGFR2 signaling. Collectively, our findings indicate that X8 could be developed as a novel antiangiogenic agent.
Asunto(s)
Neovascularización Fisiológica , Pez Cebra , Animales , Animales Modificados Genéticamente , Embrión no Mamífero/metabolismo , Neovascularización Fisiológica/genética , Nitrobenzoatos , Transducción de Señal , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismoRESUMEN
Under metabolic stress conditions such as hypoxia and glucose deprivation, an increase in the AMP:ATP ratio activates the AMP-activated protein kinase (AMPK) pathway, resulting in the modulation of cellular metabolism. Metformin, which is widely prescribed for type 2 diabetes mellitus (T2DM) patients, regulates blood sugar by inhibiting hepatic gluconeogenesis and promoting insulin sensitivity to facilitate glucose uptake by cells. At the molecular level, the most well-known mechanism of metformin-mediated cytoprotection is AMPK pathway activation, which modulates metabolism and protects cells from degradation or pathogenic changes, such as those related to aging and diabetic retinopathy (DR). Recently, it has been revealed that metformin acts via AMPK- and non-AMPK-mediated pathways to exert effects beyond those related to diabetes treatment that might prevent aging and ameliorate DR. This review focuses on new insights into the anticancer effects of metformin and its potential modulation of several novel types of nonapoptotic cell death, including ferroptosis, pyroptosis, and necroptosis. In addition, the antimetastatic and immunosuppressive effects of metformin and its hypothesized mechanism are also discussed, highlighting promising cancer prevention strategies for the future.
Asunto(s)
Retinopatía Diabética/tratamiento farmacológico , Metformina/uso terapéutico , Proteínas Quinasas Activadas por AMP/metabolismo , Envejecimiento/efectos de los fármacos , Glucemia/metabolismo , Muerte Celular/fisiología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Retinopatía Diabética/fisiopatología , Gluconeogénesis/efectos de los fármacos , Glucosa/metabolismo , Humanos , Hipoglucemiantes/farmacología , Terapia de Inmunosupresión/métodos , Insulina/metabolismo , Resistencia a la Insulina , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de SeñalRESUMEN
VEGF stimulates the formation of new blood vessels by inducing endothelial cell (EC) proliferation and migration. Brefeldin A (BFA)-inhibited guanine nucleotide-exchange protein (BIG)1 and 2 accelerate the replacement of bound GDP with GTP to activate ADP-ribosylation factor (Arf)1, which regulates vesicular transport between the Golgi and plasma membrane. Although it has been reported that treating cells with BFA interferes with Arf1 activation to inhibit VEGF secretion, the role of BIG1 and BIG2 in VEGF trafficking and expression, EC migration and proliferation, and vascular development remains unknown. Here, we found that inactivation of Arf1 reduced VEGF secretion but did not affect the levels of VEGF protein. Interestingly, however, BIG1 and BIG2 knockdown significantly decreased the levels of VEGF mRNA and protein in glioblastoma U251 cells and HUVECs. Furthermore, depletion of BIG1 and BIG2 inhibited HUVEC angiogenesis by diminishing cell migration. Angioblast migration and intersegmental vessel sprouting were also impaired when the BIG2 homolog, Arf guanine nucleotide exchange factor (arfgef)2, was knocked down in zebrafish with endothelial expression of green fluorescent protein (GFP). Depletion of arfgef2 by clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) also caused defects in vascular development of zebrafish embryos. Taken together, these data reveal that BIG1 and BIG2 participate in endothelial cell angiogenesis.-Lu, F.-I., Wang, Y.-T., Wang, Y.-S., Wu, C.-Y., Li, C.-C. Involvement of BIG1 and BIG2 in regulating VEGF expression and angiogenesis.
Asunto(s)
Factores de Intercambio de Guanina Nucleótido/fisiología , Neovascularización Fisiológica/fisiología , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Factor 1 de Ribosilacion-ADP/antagonistas & inhibidores , Factor 1 de Ribosilacion-ADP/fisiología , Animales , Sistemas CRISPR-Cas , Movimiento Celular , Embrión no Mamífero/irrigación sanguínea , Desarrollo Embrionario , Células Endoteliales/citología , Células Endoteliales/metabolismo , Técnicas de Silenciamiento del Gen , Genes Reporteros , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Factores de Intercambio de Guanina Nucleótido/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neovascularización Fisiológica/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Factor A de Crecimiento Endotelial Vascular/genética , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiologíaRESUMEN
Ceramide is a sphingolipid which regulates a variety of signaling pathways in eukaryotic cells. Exogenous ceramide has been shown to induce cellular apoptosis. In this study, we observed that exogenous ceramide induced two distinct morphologies of cell fate following C2-ceramide treatment between the two breast cancer cell lines MCF-7 (wild type p53) and MDA-MB-231 (mutant p53) cells. The growth assessment showed that C2-ceramide caused significant growth inhibition and apoptosis in MDA-MB-231 cells through down-regulating the expression of mutant p53 whereas up-regulating the expression of pro-apoptotic Bad, and the proteolytic activation of caspase-3. However, senescence-associated (SA)-ß-galactosidase (ß-gal) was regulated in MCF-7 cells after C2-ceramide treatment. The results of proliferation and apoptosis assays showed that MCF-7 cells were more resistant to C2-ceramide treatment compared to MDA-MB-231 cells. Furthermore, C2-ceramide treatment induced a time-responsive increase in Rb protein, a key regulator of senescence accompanied with the upregulation of both mRNA level and protein level of SA-genes PAI-1 and TGaseII in MCF-7 but not in MDA-MB-231 cells, suggesting that some cancer cells escape apoptosis through modulating senescence-like phenotype. The results of our present study depicted the mechanism of C2-ceramide-resistant breast cancer cells, which might benefit the strategic development of ceramide-based chemotherapeutics against cancer in the future.
Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Senescencia Celular/efectos de los fármacos , Ceramidas/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/genética , Neoplasias de la Mama/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ceramidas/química , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Modelos Biológicos , FenotipoRESUMEN
Several functionalized chromones, the key components of naturally occurring oxygenated heterocycles, have anticancer effects but their sulfone compounds are rarely investigated. In this study, we installed a sulfonyl substituent to chromen-4-one skeleton and synthesized CHW09 to evaluate its antioral cancer effect in terms of cell viability, cell cycle, apoptosis, oxidative stress, and DNA damage. In cell viability assay, CHW09 preferentially kills two oral cancer cells (Ca9-22 and CAL 27), less affecting normal oral cells (HGF-1). Although CHW09 does not change the cell cycle distribution significantly, CHW09 induces apoptosis validated by flow cytometry for annexin V and by western blotting for cleaved poly(ADP-ribose) polymerase (PARP), and caspases 3/8/9. These apoptosis signaling expressions are partly decreased by apoptosis inhibitor (Z-VAD-FMK) or free radical scavenger (N-acetylcysteine). Furthermore, CHW09 induces oxidative stress validated by flow cytometry for the generations of reactive oxygen species (ROS) and mitochondrial superoxide (MitoSOX), and the suppression of mitochondrial membrane potential (MMP). CHW09 also induces DNA damage validated by flow cytometry for the increases of DNA double strand break marker γH2AX and oxidative DNA damage marker 8-oxo-2'-deoxyguanosine (8-oxodG). Therefore, our newly synthesized CHW09 induces apoptosis, oxidative stress, and DNA damage, which may lead to preferential killing of oral cancer cells compared with normal oral cells.
Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Cromonas/farmacología , Daño del ADN , Neoplasias de la Boca/patología , Estrés Oxidativo/efectos de los fármacos , 8-Hidroxi-2'-Desoxicoguanosina , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cromonas/química , Desoxiguanosina/análogos & derivados , Desoxiguanosina/farmacología , Depuradores de Radicales Libres/farmacología , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Neoplasias de la Boca/metabolismo , Especificidad de Órganos/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasas/metabolismo , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Ceramides, abundant sphingolipids on the cell membrane, can act as signaling molecules to regulate cellular functions including cell viability. Exogenous ceramide has been shown to exert potent anti-proliferative effects against cancer cells, but little is known about how it affects reactive oxygen species (ROS) in lung cancer cells. In this study, we investigated the effect of N-octanoyl-D-erythro-sphingosine (C8-ceramide) on human non-small-cell lung cancer H1299 cells. Flow cytometry-based assays indicated that C8-ceramide increased the level of endogenous ROS in H1299 cells. Interestingly, the ratio of superoxide dismutases (SODs) SOD1 and SOD2 seem to be regulated by C8-ceramide treatment. Furthermore, the accumulation of cell cycle G1 phase and apoptotic populations in C8-ceramide-treated H1299 cells was observed. The results of the Western blot showed that C8-ceramide causes a dramatically increased protein level of cyclin D1, a critical regulator of cell cycle G1/S transition. These results suggest that C8-ceramide acts as a potent chemotherapeutic agent and may increase the endogenous ROS level by regulating the switch of SOD1 and SOD2, causing the anti-proliferation, and consequently triggering the apoptosis of NSCLC H1299 cells. Accordingly, our works may give a promising strategy for lung cancer treatment in the future.
Asunto(s)
Apoptosis/efectos de los fármacos , Ceramidas/farmacología , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/patología , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa-1/metabolismo , Superóxido Dismutasa/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ceramidas/química , Fase G1/efectos de los fármacos , Humanos , Modelos Biológicos , Invasividad NeoplásicaRESUMEN
α-melanocyte-stimulating hormone (α-MSH) has been characterized as a novel angiogenesis inhibitor. The homeostasis of nitric oxide (NO) plays an important role in neovascularization. However, it remains unclear whether α-MSH mitigates angiogenesis through modulation of NO and its signaling pathway. The present study elucidated the function and mechanism of NO signaling in α-MSH-induced angiogenesis inhibition using cultured human umbilical vein endothelial cells (HUVECs), rat aorta rings, and transgenic zebrafish. By Griess reagent assay, it was found α-MSH dose-dependently reduced the NO release in HUVECs. Immunoblotting and immunofluorescence analysis revealed α-MSH potently suppressed endothelial and inducible nitric oxide synthase (eNOS/iNOS) expression, which was accompanied with inhibition of nuclear factor kappa B (NF-κB) activities. Excessive supply of NO donor l-arginine reversed the α-MSH-induced angiogenesis inhibition in vitro and in vivo. By using antibody neutralization and RNA interference, it was delineated that melanocortin-1 receptor (MC1-R) and melanocortin-2 receptor (MC2-R) participated in α-MSH-induced inhibition of NO production and NF-κB/eNOS/iNOS signaling. This was supported by pharmaceutical inhibition of protein kinase A (PKA), the downstream effector of MC-Rs signaling, using H89 abolished the α-MSH-mediated suppression of NO release and eNOS/iNOS protein level. Therefore, α-MSH exerts anti-angiogenic function by perturbing NO bioavailability and eNOS/iNOS expression in endothelial cells.
Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , FN-kappa B/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Receptores de Melanocortina/metabolismo , alfa-MSH/uso terapéutico , Células Endoteliales de la Vena Umbilical Humana , Humanos , Óxido Nítrico , Interferencia de ARN , Transducción de Señal/efectos de los fármacosRESUMEN
Angioblasts of the developing vascular system require many signaling inputs to initiate their migration, proliferation and differentiation into endothelial cells. What is less studied is which intrinsic cell factors interpret these extrinsic signals. Here, we show the Lim homeodomain transcription factor islet2a (isl2a) is expressed in the lateral posterior mesoderm prior to angioblast migration. isl2a deficient angioblasts show disorganized migration to the midline to form axial vessels and fail to spread around the tailbud of the embryo. Isl2a morphants have fewer vein cells and decreased vein marker expression. We demonstrate that isl2a is required cell autonomously in angioblasts to promote their incorporation into the vein, and is permissive for vein identity. Knockout of isl2a results in decreased migration and proliferation of angioblasts during intersegmental artery growth. Since Notch signaling controls both artery-vein identity and tip-stalk cell formation, we explored the interaction of isl2a and Notch. We find that isl2a expression is negatively regulated by Notch activity, and that isl2a positively regulates flt4, a VEGF-C receptor repressed by Notch during angiogenesis. Thus Isl2a may act as an intermediate between Notch signaling and genetic programs controlling angioblast number and migration, placing it as a novel transcriptional regulator of early angiogenesis.
Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas con Homeodominio LIM/fisiología , Neovascularización Fisiológica/fisiología , Factores de Transcripción/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Arterias/embriología , Movimiento Celular , Técnicas de Inactivación de Genes , Proteínas con Homeodominio LIM/deficiencia , Proteínas con Homeodominio LIM/genética , Mesodermo , Morfolinos/genética , Morfolinos/toxicidad , Neovascularización Patológica/genética , Neovascularización Patológica/patología , ARN Mensajero/genética , Receptores Notch/fisiología , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Transcripción Genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/fisiología , Venas/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genéticaRESUMEN
BACKGROUND: 2,9-Bis[2-(pyrrolidin-1-yl)ethoxy]-6-{4-[2-(pyrrolidin-1-yl)ethoxy] phenyl}-11H-indeno[1,2-c]quinoline-11-one (BPIQ), is a synthetic quinoline analog. A previous study showed the anti-cancer potential of BPIQ through modulating mitochondrial-mediated apoptosis. However, the effect of BPIQ on cell migration, an index of cancer metastasis, has not yet been examined. Furthermore, among signal pathways involved in stresses, the members of the mitogen-activated protein kinase (MAPK) family are crucial for regulating the survival and migration of cells. In this study, the aim was to explore further the role of MAPK members, including JNK, p38 and extracellular signal-regulated kinase (ERK) in BPIQ-induced apoptosis and anti-migration of human non-small cell lung cancer (NSCLC) cells. METHODS: Western Blot assay was performed for detecting the activation of MAPK members in NSCLC H1299 cells following BPIQ administration. Cellular proliferation was determined using a trypan blue exclusion assay. Cellular apoptosis was detected using flow cytometer-based Annexin V/propidium iodide dual staining. Cellular migration was determined using wound-healing assay and Boyden's chamber assay. Zymography assay was performed for examining MMP-2 and -9 activities. The assessment of MAPK inhibition was performed for further validating the role of JNK, p38, and ERK in BPIQ-induced growth inhibition, apoptosis, and migration of NSCLC cells. RESULTS: Western Blot assay showed that BPIQ treatment upregulates the phosphorylated levels of both MAPK proteins JNK and ERK. However, only ERK inhibitor rescues BPIQ-induced growth inhibition of NSCLC H1299 cells. The results of Annexin V assay further confirmed the pro-apoptotic role of ERK in BPIQ-induced cell death of H1299 cells. The results of wound healing and Boyden chamber assays showed that sub-IC50 (sub-lethal) concentrations of BPIQ cause a significant inhibition of migration in H1299 cells accompanied with downregulating the activity of MMP-2 and -9, the motility index of cancer cells. Inhibition of ERK significantly enhances BPIQ-induced anti-migration of H1299 cells. CONCLUSIONS: Our results suggest ERK may play dual roles in BPIQ-induced apoptosis and anti-migration, and it would be worthwhile further developing strategies for treating chemoresistant lung cancers through modulating ERK activity.
RESUMEN
Soft corals-derived natural product, sinularin, was antiproliferative against some cancers but its effect and detailed mechanism on oral cancer cells remain unclear. The subject of this study is to examine the antioral cancer effects and underlying detailed mechanisms in terms of cell viability, oxidative stress, cell cycle analysis, and apoptosis analyses. In MTS assay, sinularin dose-responsively decreased cell viability of three oral cancer cells (Ca9-22, HSC-3, and CAL 27) but only little damage to oral normal cells (HGF-1). This cell killing effect was rescued by the antioxidant N-acetylcysteine (NAC) pretreatment. Abnormal cell morphology and induction of reactive oxygen species (ROS) were found in sinularin-treated oral cancer Ca9-22 cells, however, NAC pretreatment also recovered these changes. Sinularin arrested the Ca9-22 cells at G2/M phase and dysregulated the G2/M regulatory proteins such as cdc2 and cyclin B1. Sinularin dose-responsively induced apoptosis on Ca9-22 cells in terms of flow cytometry (annexin V and pancaspase analyses) and western blotting (caspases 3, 8, 9) and poly (ADP-ribose) polymerase (PARP). These apoptotic changes of sinularin-treated Ca9-22 cells were rescued by NAC pretreatment. Taken together, sinularin induces oxidative stress-mediated antiproliferation, G2/M arrest, and apoptosis against oral cancer cells and may be a potential marine drug for antioral cancer therapy.
Asunto(s)
Antineoplásicos/farmacología , Diterpenos/farmacología , Compuestos Heterocíclicos con 3 Anillos/farmacología , Neoplasias de la Boca/tratamiento farmacológico , Acetilcisteína/farmacología , Antineoplásicos/toxicidad , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Diterpenos/toxicidad , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos/toxicidad , Humanos , Estrés Oxidativo/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasas/metabolismo , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Paclobutrazol (PBZ) is a widely used fungicide that shows toxicity to aquatic embryos, probably through rain-wash. Here, we specifically focus on its toxic effect on eye development in zebrafish, as well as the role of retinoic acid (RA), a metabolite of vitamin A that controls proliferation and differentiation of retinal photoreceptor cells, in this toxicity. Embryos were exposed to PBZ with or without RA from 2 to 72 h post-fertilization (hpf), and PBZ-treated embryos (2-72 hpf) were exposed to RA for additional hours until 120 hpf. Eye size and histology were examined. Expression levels of gnat1 (rod photoreceptor marker), gnat2 (cone photoreceptor marker), aldehyde dehydrogenases (encoding key enzymes for RA synthesis), and phospho-histone H3 (an M-phase marker) in the eyes of control and treated embryos were examined. PBZ exposure dramatically reduces photoreceptor proliferation, thus resulting in a thinning of the photoreceptor cell layer and leading to a small eye. Co-treatment of PBZ with RA, or post-treatment of PBZ-treated embryos with RA, partially rescues photoreceptor cells, revealed by expression levels of marker proteins and by retinal cell proliferation. PBZ has strong embryonic toxicity to retinal photoreceptors, probably via suppressing the production of RA, with effects including impaired retinal cell division.
Asunto(s)
Diferenciación Celular/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Células Fotorreceptoras de Vertebrados/citología , Células Fotorreceptoras de Vertebrados/efectos de los fármacos , Tretinoina/farmacología , Triazoles/toxicidad , Animales , Relación Dosis-Respuesta a Droga , Embrión no Mamífero , Fenotipo , Células Fotorreceptoras de Vertebrados/metabolismo , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/embriología , Epitelio Pigmentado de la Retina/patología , Tretinoina/metabolismo , Pez CebraRESUMEN
Blood vessels in vertebrates are established and genetically controlled in an evolutionarily-conserved manner during embryogenesis. Disruption of vascular growth by chemical compounds or environmental hormones may cause developmental defects. This study analyzed the vascular impacts of marine compound GB9 in zebrafish. GB9 was isolated from the marine soft coral Capnella imbricata and had shown anti-neuroinflammatory and anti-nociceptive activities. However, the role of GB9 on vascular development has not been reported. We first tested the survival rate of embryos under exogenous 5, 7.5, 10, and 15 µM GB9 added to the medium and determined a sub-lethal dosage of 10 µM GB9 for further assay. Using transgenic Tg(fli:eGFP) fish to examine vascular development, we found that GB9 treatment impaired intersegmental vessel (ISV) growth and caudal vein plexus (CVP) patterning at 25 hours post-fertilization (hpf) and 30 hpf. GB9 exposure caused pericardial edema and impaired circulation at 48-52 hpf, which are common secondary effects of vascular defects and suggest the effects of GB9 on vascular development. Apoptic cell death analysis showed that vascular defects were not caused by cell death, but were likely due to the inhibition of migration and/or proliferation by examining ISV cell numbers. To test the molecular mechanisms of vascular defects in GB9-treated embryos, we examined the expression of vascular markers and found the decreased expression of vascular specific markers ephrinb2, flk, mrc1, and stabilin. In addition, we examined whether GB9 treatment impairs vascular growth due to an imbalance of redox homeostasis. We found an enhanced effect of vascular defects during GB9 and H2O2 co-treatment. Moreover, exogenous N-acetyl-cysteine (NAC) treatment rescued the vascular defects in GB9 treated embryos. Our results showed that GB9 exposure causes vascular defects likely mediated by the imbalance of redox homeostasis.
Asunto(s)
Antozoos/química , Neovascularización Fisiológica/efectos de los fármacos , Sesquiterpenos/farmacología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente/embriología , Animales Modificados Genéticamente/genética , Sesquiterpenos/química , Pez Cebra/genéticaRESUMEN
Cellular components and signaling pathways are required for the proper growth of blood vessels. Here, we report for the first time that a teleost-specific gene ftr82 (finTRIM family, member 82) plays a critical role in vasculature during zebrafish development. To date, there has been no description of tripartite motif proteins (TRIM) in vascular development, and the role of ftr82 is unknown. In this study, we found that ftr82 mRNA is expressed during the development of vessels, and loss of ftr82 by morpholino (MO) knockdown impairs the growth of intersegmental vessels (ISV) and caudal vein plexus (CVP), suggesting that ftr82 plays a critical role in promoting ISV and CVP growth. We showed the specificity of ftr82 MO by analyzing ftr82 expression products and expressing ftr82 mRNA to rescue ftr82 morphants. We further showed that the knockdown of ftr82 reduced ISV cell numbers, suggesting that the growth impairment of vessels is likely due to a decrease of cell proliferation and migration, but not cell death. In addition, loss of ftr82 affects the expression of vascular markers, which is consistent with the defect of vascular growth. Finally, we showed that ftr82 likely interacts with vascular endothelial growth factor (VEGF) and Notch signaling. Together, we identify teleost-specific ftr82 as a vascular gene that plays an important role for vascular development in zebrafish.
Asunto(s)
Tipificación del Cuerpo , Neovascularización Fisiológica , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Biomarcadores/metabolismo , Circulación Sanguínea , Tipificación del Cuerpo/genética , Edema/patología , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Neovascularización Fisiológica/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genéticaRESUMEN
Wnt/ß-catenin signaling controls various cell fates in metazoan development, and its dysregulation is often associated with cancer formation. However, regulations of this signaling pathway are not completely understood. Here, we report that Lzap, a tumor suppressor, controls nuclear translocation of ß-catenin. In zebrafish embryos disruption of lzap increases the expression of chordin (chd), which encodes a bone morphogenetic protein (BMP) antagonist that is localized in prospective dorsal cells and promotes dorsal fates. Consistently, lzap-deficient embryos with attenuated BMP signaling are dorsalized, which can be rescued by overexpression of zebrafish lzap or bmp2b or human LZAP. The expansion of chd expression in embryos lacking lzap is due to the accumulation of nuclear ß-catenin in ventral cells, in which ß-catenin is usually degraded. Furthermore, the activity of GSK3, a master regulator of ß-catenin degradation, is suppressed in lzap-deficient embryos via inhibitory phosphorylation. Finally, we also report that a similar regulatory axis is also likely to be present in a human tongue carcinoma cell line, SAS. Our results reveal that Lzap is a novel regulator of GSK3 for the maintenance of ventral cell properties and may prevent carcinogenesis via the regulation of ß-catenin degradation.