Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Transl Med ; 18(1): 163, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32276643

RESUMEN

BACKGROUND: Malignant serous effusion (MSE) denotes a manifestation of metastatic disease with typical high concentrations of both cancer and immune cells, making them an ideal resource for in vitro cytologic studies. Hence, the aim of the study was to investigate the features of 2D and 3D MSE culture systems as well as their feasibilities for in vitro drug screening. METHODS: Pleural and peritoneal effusions from 8 patients were collected and processed for 2D monolayer and 3D hanging drop cell culture into GravityPLUS™ plates. Representative markers for cell components, proliferation rate and tumour classification were investigated by immunohistochemistry, followed by absolute quantification using a digitalised image analysis approach. Further, we implemented another 3D cell culture model based on a low attachment method for in vitro drug sensitivity testing of carboplatin, pemetrexed and pembrolizumab for 5 patients. RESULTS: Monolayer cell culture was favourable for the growth of mesothelial cells, while hanging drop culture in GravityPLUS™ plates showed better ability for preserving cancer cells, inducing positive diagnostic markers expression and restraining the growth of mesothelial cells. For in vitro drug testing, MSE from five patients presented various drug sensitivities, and one case showed strong response to PD-1 checkpoint inhibition (pembrolizumab). For some patients, the application of combinatorial drugs had better therapeutic responses compared to monotherapy. CONCLUSIONS: Digitalised quantification of data offers a better understanding of different MSE culture models. More importantly, the proposed platforms are practical and amenable for performing in vitro chemo-/immunotherapeutic drug testing by using routine cytologic MSE in a personalised manner. Next to cell blocks, our work demonstrates the prognostic and predictive value of cytologic effusion samples.


Asunto(s)
Líquido Ascítico , Derrame Pleural Maligno , Técnicas de Cultivo de Célula , Evaluación Preclínica de Medicamentos , Humanos , Pemetrexed , Derrame Pleural Maligno/tratamiento farmacológico
2.
BMC Biotechnol ; 15: 55, 2015 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-26070459

RESUMEN

BACKGROUND: In order to shed light on the regenerative mechanism of mesenchymal stem cells (MSCs) in vivo, the bio-distribution profile of implanted cells using a stable and long-term tracking method is needed. We herein investigated the bio-distribution of human placental deciduas basalis derived MSCs (termed as PDB-MSCs) in nude mice after intravenous injection by carbon radioisotope labeling thymidine ((14)C-TdR), which is able to incorporate into new DNA strands during cell replication. RESULTS: The proliferation rate and radioactive emission of human PDB-MSCs after labeled with different concentrations of (14)C-TdR were measured. PDB-MSCs labeled with 1 µCi possessed high radioactivity, and the biological characteristics (i.e. morphology, colony forming ability, differentiation capabilities, karyotype and cell cycle) showed no significant changes after labeling. Thus, 1 µCi was the optimal concentration in this experimental design. In nude mice, 1 × 10(6) (14)C-TdR-labeled PDB-MSCs were injected intravenously and the organs were collected at days 1, 2, 3, 5, 30 and 180 after injection, respectively. Radiolabeled PDB-MSCs were found mainly in the lung, liver, spleen, stomach and left femur of the recipient nude mice at the whole observation period. CONCLUSIONS: This work provided solid evidence that (14)C-TdR labeling did not alter the biological characteristics of human placental MSCs, and that this labeling method has potential to decrease the signal from non-infused or dead cells for cell tracking. Therefore, this labeling technique can be utilized to quantify the infused cells after long-term follow-up in pre-clinical studies.


Asunto(s)
Radioisótopos de Carbono/farmacocinética , Rastreo Celular/métodos , Células Madre Mesenquimatosas/química , Células Madre Mesenquimatosas/citología , Placenta/citología , Timidina/farmacocinética , Animales , Radioisótopos de Carbono/química , Femenino , Humanos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Desnudos , Embarazo , Timidina/química , Distribución Tisular
3.
Cell Biol Int ; 38(7): 892-7, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24687575

RESUMEN

Mesenchymal stem cells (MSCs) have been increasingly offered for tissue regeneration with the premise that they can survive and thrive amidst the microenvironment of injured or degenerate tissues. The role of high mobility group box 1 (HMGB1) and hypoxia in the proliferation and migration of rat bone marrow MSCs (rBM-MSCs) has been investigated. First, the effect of HMGB1 on the proliferation of rBM-MSCs was determined. Second, to evaluate the regulation of hypoxia and HMGB1 in the migration of rBM-MSCs, cells in the wound healing model were exposed to four conditions: normoxia (20% O2) and complete medium, normoxia and HMGB1, hypoxia (1% O2) and complete medium, hypoxia and HMGB1. RT-PCR and Western blotting were used to measure the expression of migration-related genes and proteins. HMGB1 inhibited the proliferation of rBM-MSCs; HMGB1 alone or together with hypoxia and promoted the migration of MSCs and upregulated the expression of HIF-1α and SDF-1. These results demonstrated that HMGB1 arrested the proliferation of rBM-MSCs, but enhanced the migration of rBM-MSCs which could be further improved by hypoxia. This study strengthens current understanding of the interaction between MSCs and the microenvironment of damaged tissues.


Asunto(s)
Hipoxia de la Célula , Proteína HMGB1/metabolismo , Células Madre Mesenquimatosas/citología , Animales , Células de la Médula Ósea/citología , Movimiento Celular , Proliferación Celular , Proteína HMGB1/genética , Células Madre Mesenquimatosas/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley
4.
Front Oncol ; 12: 1031094, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36267973

RESUMEN

Malignant pleural effusion (MPE) is a common complication of lung adenocarcinoma (LADC) which is associated with a dismal prognosis. We investigated the prognostic role of PD-L1 and other immunomodulators expression in the immune compartment of MPE immune composition. MPE cytologic cell blocks of 83 LADC patients were analysed for the mRNA expression of 770 cancer-immune genes by the NanoString nCounter platform. The expression of relevant immune cell lineage markers was validated by immunohistochemistry (IHC) using quantitative pathology. The mRNA immune profiling identified four MPE patient clusters (C). C1/2 (adaptive+, hot) showed better overall survival (OS) than C3/4 (adaptive-, cold). Additionally, cold immunity profiles (adaptive-), C4 (innate+) were associated with worse OS than C3 (innate-). High PD-L1 expression was linked to the regulation of T cell activation and interferon signalling pathways. Genes of pattern recognition receptor and type I interferon signalling pathways were specifically upregulated in the long-survival (≥90 days) patient group. Moreover, immunomodulators were co-activated and highly expressed in hot adaptive immunity patient clusters, whereas CD274 (PD-L1), TNFRSF9 (4-1BB), VEGFA (VEGF-A) and CD276 (B7-H3) were upregulated in the groups referred as cold. The patient cluster, age and PD-L1 expression were independent prognosticators for LADC MPE patients (p-value < 0.05). Our study sheds light on the variances of immune contexture regarding different PD-L1 expression and survival conditions. It revealed four distinct prognostic patient clusters with specific immune cell components and immunomodulator expression profiles, which, collectively, is supportive for future therapeutic and prognosis for cancer management.

5.
J Biomed Nanotechnol ; 17(1): 18-36, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33653494

RESUMEN

Multidrug resistance (MDR) is a key to the ineffectiveness of hepatocellular carcinoma (HCC) chemotherapy. Oxaliplatin (OXA), as one of the first-line chemotherapeutic drugs for HCC, abnormally activates the PI3K/AKT/mTOR signaling pathway and DNA damage repair pathway (NHEJ and HR), causing drug resistance and consequnet compromised efficacy. Herein, we developed a hollow polydopamine nanoparticle (H-PDA)-based nano-delivery system (O/P-HP) that contained OXA and a dual PI3K/mTOR inhibitor PKI-587 with complementary effects for combating drug resistance in cancer chemotherapy. The hollow structure of H-PDA endowed O/P-HP with high loading efficiencies of OXA and PKI-587-up to 49.6% and 7.0%, respectively. In addition, benefiting from the intracellular delivery of H-PDA as well as the highly concentrated drugs therein, O/P-HP inhibited the proliferation of OXA-resistant HR cells, resulting in a cell viability of only 17.63%. These values were significantly superior to those with OXA single-agent treatment and treatment with free OXA in combination with PKI-587. We examined the intrinsic mechanisms of the combination therapy: O/PHP had excellent anti-cancer effects via the simultaneous upstream and downstream action to re-sensitize HR cells to chemotherapy; OXA induced strong apoptosis via the direct platinum lesions on DNA molecules, while PKI-587 normalized the abnormally activated PI3K/AKT/mTOR signaling pathway and DNA damage repair pathway (NHEJ and HR) that could attenuate the effectiveness of OXA, thus resulting in inhibition of cell proliferation, migration and DNA repair enzyme activity and the augment of apoptotic effects. Such combination therapy, with simultaneous upstream and downstream action, may be a strategy for minimizing resistance for anti-cancer treatments.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Preparaciones Farmacéuticas , Apoptosis , Carcinoma Hepatocelular/tratamiento farmacológico , Línea Celular Tumoral , Humanos , Indoles , Neoplasias Hepáticas/tratamiento farmacológico , Morfolinas , Oxaliplatino , Fosfatidilinositol 3-Quinasas , Polímeros , Triazinas
6.
Biomater Sci ; 8(22): 6190-6203, 2020 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-32966367

RESUMEN

Supramolecular hydrogels derived from natural biomolecules have promising applications for drug delivery due to their inherent biocompatibility and tunable responsiveness to various stimuli. However, conventional hydrogels only modulate the release kinetics roughly to achieve sustained drug release, exhibiting fast-then-slow release behavior without on/off control. Herein, a guanosine (G)-quartet·Na+-borate supramolecular hydrogel (GB hydrogel) cross-linked via a guanosine-borate diester and intertwined by G4-nanofibres formed by π-π stacking of G4-quartets stabilized by Na+ is developed for on-demand release of Acyclovir (Acv). This GB hydrogel is facilely prepared by a one-pot hierarchical assembly involving hydrogen bonds, dynamic borate ester bonds and cation coordination, which endow it with tunable mechanical properties, excellent self-healing properties and reversible degradation behavior in response to pH, glucose and ion concentration. Benefiting from that the guanosine analog Acv is able to assemble into a G4-quartet by replacing guanosine via reversible hydrogen bonding, the Acv-loaded GB hydrogel showed favorable stability in physiological medium without undesired release and achieved external stimulus-triggered on-demand release with switchable on/off control and tunable release kinetics. Moreover, the GB hydrogel also exhibited excellent in vitro and in vivo biocompatibility. Such a natural nucleoside-based supramolecular hydrogel with on-demand drug release, self-healing property, biodegradability and biocompatibility provides a precisely controlled paradigm to overcome early burst release behavior of conventional hydrogels for the development of injectable hydrogel delivery systems.


Asunto(s)
Boratos , Hidrogeles , Aciclovir , Preparaciones de Acción Retardada , Guanosina
7.
Stem Cells Int ; 2019: 4242178, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31885606

RESUMEN

The osteogenic potential of mesenchymal stromal cells (MSCs) varies among different tissue sources. Strontium enhances the osteogenic differentiation of bone marrow-derived MSCs (BM-MSCs), but whether it exerts similar effects on placental decidual basalis-derived MSCs (PDB-MSCs) remains unknown. Here, we compared the influence of strontium on the proliferation and osteogenic differentiation of human PDB- and BM-MSCs in vitro. We found that 1 mM and 10 mM strontium, but not 0.1 mM strontium, evidently promoted the proliferation of human PDB- and BM-MSCs. These doses of strontium showed a comparable alkaline phosphatase activity in both cell types, but their osteogenic gene expressions were promoted in a dose-dependent manner. Strontium at doses of 0.1 mM and 1 mM elevated several osteogenic gene expressions of PDB-MSCs, but not those of BM-MSCs at an early stage. Nevertheless, they failed to enhance the mineralization of either cell type. By contrast, 10 mM strontium facilitated the osteogenic gene expression as well as the mineralization of human PDB- and BM-MSCs. Collectively, this study demonstrated that human PDB- and BM-MSCs shared a great similarity in response to strontium, which promoted their proliferation and osteogenic differentiation in a dose-dependent manner.

8.
Mater Sci Eng C Mater Biol Appl ; 84: 12-20, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29519420

RESUMEN

Acellular bone matrix (ACBM) provides an osteoconductive scaffold for bone repair, but its osteoinductivity is poor. Strontium (Sr) improves the osteoinductivity of bone implants. In this study, we developed an organic composite-mediated strontium coating strategy for ACBM scaffolds by using the ion chelating ability of carboxymethyl cellulose (CMC) and the surface adhesion ability of dopamine (DOPA). The organic coating composite, termed the CMC-DOPA-Sr composite, was synthesized under a mild condition, and its chemical structure and strontium ion chelating ability were then determined. After surface decoration, the physicochemical properties of the strontium-coated ACBM (ACBM-Sr) scaffolds were characterized, and their biocompatibility and osteoinductivity were determined in vitro and in vivo. The results showed that the CMC-DOPA-Sr composite facilitated strontium coating on the surface of ACBM scaffolds. The ACBM-Sr scaffolds possessed a sustained strontium ion release profile, exhibited good cytocompatibility, and enhanced the osteogenic differentiation of mesenchymal stem cells in vitro. Furthermore, the ACBM-Sr scaffolds showed good histocompatibility after subcutaneous implantation in nude mice. Taken together, this study provided a simple and mild strategy to realize strontium coating for ACBM scaffolds, which resulted in good biocompatibility and improved osteoinductivity.


Asunto(s)
Matriz Ósea/química , Materiales Biocompatibles Revestidos/química , Estroncio/química , Animales , Células de la Médula Ósea/citología , Carboximetilcelulosa de Sodio/química , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Materiales Biocompatibles Revestidos/farmacología , Dopamina/química , Humanos , Masculino , Células Madre Mesenquimatosas/citología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Osteogénesis/efectos de los fármacos , Andamios del Tejido/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA