Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Mol Med ; 26(15): 4305-4321, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35794816

RESUMEN

Lung cancer is the leading cause of cancer-associated death, with a global 5-year survival rate <20%. Early metastasis and recurrence remain major challenges for lung cancer treatment. The stemness property of cancer cells has been suggested to play a key role in cancer plasticity, metastasis and drug-resistance, and is a potential target for drug development. In this study, we found that in non-small cell lung cancer (NSCLC), BMI1 and MCL1 play crucial roles of cancer stemness including invasion, chemo-resistance and tumour initiation. JNK signalling serves as a link between oncogenic pathway or genotoxicity to cancer stemness. The activation of JNK, either by mutant EGFR or chemotherapy agent, stabilized BMI1 and MCL1 proteins through suppressing the expression of E3-ubiquitin ligase HUWE1. In lung cancer patient samples, high level of BMI1 is correlated with poor survival, and the expression of BMI1 is positively correlated with MCL1. A novel small-molecule, BI-44, was developed, which effectively suppressed BMI1/MCL1 expressions and inhibited tumour formation and progression in preclinical models. Targeting cancer stemness mediated by BMI1/MCL1 with BI-44 provides the basis for a new therapeutic approach in NSCLC treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Células Madre Neoplásicas/metabolismo , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
2.
Sensors (Basel) ; 22(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35214454

RESUMEN

In this work we propose a novel method for impact position estimation during baseball batting, which is independent of impact intensity, i.e., force-irrelevant. In our experiments, we mount a piezoelectric vibration sensor on the knob of a wooden bat to record: (1) 3600 vibration signals (waveforms) from ball-bat impacts in the static experiment-30 impacts from each of 40 positions (distributed 1-40 cm from the end of the barrel) and 3 intensities (drop heights at 75, 100, and 125 cm, resp.), and (2) 45 vibration signals from actual battings by three baseball players in the dynamic experiment. The results show that the peak amplitude of the signal in the time domain, and the peaks of the first, second, and third eigenfrequencies (EFs) of the bat all increase with the impact intensity. However, the ratios of peaks at these three EFs (1st/2nd, 2nd/3rd, and 1st/3rd) hardly change with the impact intensity, and the observation is consistent for both the static and dynamic experiments across all impact positions. In conclusion, we have observed that the ratios of peaks at the first three EFs are a force-irrelevant feature, which can be used to estimate the impact position in baseball batting.


Asunto(s)
Béisbol , Modalidades de Fisioterapia , Vibración
3.
Med Sci Monit ; 26: e927073, 2020 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-33161410

RESUMEN

BACKGROUND Colon adenocarcinoma (COAD) is one of the most common malignant tumors and has high incidence and mortality rates. The interferon regulatory factor (IRF) family is known as a key transcription factor in the IFN signaling pathway and cellular immunity. This research explored the relationship between the IRF family and COAD through use of bioinformatics technology. MATERIAL AND METHODS Using the UALCAN and GEPIA databases, we analyzed the transcription and prognostic value of IRFs in COAD, and GSCALite was used in cancer genomics analysis. TIMER, LinkedOmics, and Metascape were used to assess the potential function of IRFs in COAD. RESULTS The transcription levels of IRF3 were elevated in COAD tissues, while IRF2/4/6 were downregulated compared with normal patients in subgroup analyses of race, age, weight, sex, nodal metastasis, individual cancer stages, TP53 mutation status, and histological subtypes. IRF3 and IRF7 in COAD were significantly associated with a poor prognosis. Drug sensitivity analysis revealed that the expression level of IRF2/4/8 was negatively associated with drug resistance. A significant correlation was found between the IRF family and immune cell infiltration. Moreover, enrichment analysis revealed that the IRFs were associated with response to tumor necrosis factor, transcription misregulation in cancer, and JAK-STAT signaling pathway. We also identified several kinase and miRNA targets of the IRF family in COAD. CONCLUSIONS We identified IRF3 and IRF7 as prognostic biomarkers in COAD, and the IRF family was associated with immune cell infiltration and gene regulation networks, providing additional evidence showing the significant role of the IRF family in COAD.


Asunto(s)
Adenocarcinoma/diagnóstico , Adenocarcinoma/metabolismo , Neoplasias del Colon/diagnóstico , Neoplasias del Colon/metabolismo , Factores Reguladores del Interferón/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/inmunología , Neoplasias del Colon/genética , Neoplasias del Colon/inmunología , Metilación de ADN/genética , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica , Ontología de Genes , Variación Genética , Humanos , Factores Reguladores del Interferón/genética , MicroARNs/genética , MicroARNs/metabolismo , Pronóstico , Transcripción Genética
4.
Int J Mol Sci ; 21(18)2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32957649

RESUMEN

Nicotine in tobacco smoke is considered carcinogenic in several malignancies including lung cancer. The high incidence of lung adenocarcinoma (LAC) in non-smokers, however, remains unexplained. Although LAC has long been less associated with smoking behavior based on previous epidemiological correlation studies, the effect of environmental smoke contributing to low-dose nicotine exposure in non-smoking population could be underestimated. Here we provide experimental evidence of how low-dose nicotine promotes LAC growth in vitro and in vivo. Screening of nicotinic acetylcholine receptor subunits in lung cancer cell lines demonstrated a particularly high expression level of nicotinic acetylcholine receptor subunit α5 (α 5-nAChR) in LAC cell lines. Clinical specimen analysis revealed up-regulation of α 5-nAChR in LAC tumor tissues compared to non-tumor counterparts. In LAC cell lines α 5-nAChR interacts with epidermal growth factor receptor (EGFR), positively regulates EGFR pathway, enhances the expression of epithelial-mesenchymal transition markers, and is essential for low-dose nicotine-induced EGFR phosphorylation. Functionally, low-dose nicotine requires α 5-nAChR to enhance cell migration, invasion, and proliferation. Knockdown of α 5-nAChR inhibits the xenograft tumor growth of LAC. Clinical analysis indicated that high level of tumor α 5-nAChR is correlated with poor survival rates of LAC patients, particularly in those expressing wild-type EGFR. Our data identified α 5-nAChR as an essential mediator for low-dose nicotine-dependent LAC progression possibly through signaling crosstalk with EGFR, supporting the involvement of environmental smoke in tumor progression in LAC patients.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Proliferación Celular/efectos de los fármacos , Neoplasias Pulmonares/metabolismo , Nicotina/toxicidad , Receptores Nicotínicos/metabolismo , Contaminación por Humo de Tabaco/efectos adversos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/mortalidad , Adenocarcinoma del Pulmón/patología , Animales , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/genética , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal/efectos de los fármacos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/metabolismo , Fosforilación , Receptores Nicotínicos/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Regulación hacia Arriba/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
5.
J Cell Mol Med ; 23(7): 4759-4769, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31066230

RESUMEN

Expansion of limbal epithelial stem cells (LSCs) is crucial for the success of limbal transplantation. Previous studies showed that pigment epithelium-derived peptide (PEDF) short peptide 44-mer could effectively expand LSCs and maintain them in a stem-cell state, but the mechanism remained unclear. In the current study, we found that pharmacological inhibition of Sonic Hedgehog (SHh) activity reduced the LSC holoclone number and suppressed LSC proliferation in response to 44-mer. In mice subjected to focal limbal injury, 44-mer facilitated the restoration of the LSC population in damaged limbus, and such effect was impeded by the SHh or ATGL (a PEDF receptor) inhibitor. Furthermore, we showed that 44-mer increased nuclear translocation of Gli1 and Gli3 in LSCs. Knockdown of Gli1 or Gli3 suppressed the ability of 44-mer to induce cyclin D1 expression and LSC proliferation. In addition, ATGL inhibitor suppressed the 44-mer-induced phosphorylation of STAT3 at Tyr705 in LSC. Both inhibitors for ATGL and STAT3 attenuated 44-mer-induced SHh activation and LSC proliferation. In conclusion, our data demonstrate that SHh-Gli pathway driven by ATGL/STAT3 signalling accounts for the 44-mer-mediated LSC proliferation.


Asunto(s)
Proteínas del Ojo/farmacología , Proteínas Hedgehog/metabolismo , Limbo de la Córnea/citología , Factores de Crecimiento Nervioso/farmacología , Péptidos/farmacología , Serpinas/farmacología , Transducción de Señal , Células Madre/citología , Animales , Proliferación Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Lipasa/metabolismo , Ratones Endogámicos BALB C , Mitógenos/farmacología , Conejos , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Células Madre/efectos de los fármacos , Factores de Transcripción/metabolismo
6.
J Cell Mol Med ; 23(12): 8184-8195, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31638335

RESUMEN

Cancer stem cells (CSCs) play an important role in cancer treatment resistance and disease progression. Identifying an effective anti-CSC agent may lead to improved disease control. We used CSC-associated gene signatures to identify drug candidates that may inhibit CSC growth by reversing the CSC gene signature. Thiostrepton, a natural cyclic oligopeptide antibiotic, was the top-ranked candidate. In non-small-cell lung cancer (NSCLC) cells, thiostrepton inhibited CSC growth in vitro and reduced protein expression of cancer stemness markers, including CD133, Nanog and Oct4A. In addition, metastasis-associated Src tyrosine kinase signalling, cell migration and epithelial-to-mesenchymal transition (EMT) were all inhibited by thiostrepton. Mechanistically, thiostrepton treatment led to elevated levels of tumour suppressor miR-98. Thiostrepton combined with gemcitabine synergistically suppressed NSCLC cell growth and induced apoptosis. The inhibition of NSCLC tumours and CSC growth by thiostrepton was also demonstrated in vivo. Our findings indicate that thiostrepton, an established drug identified in silico, is an inhibitor of CSC growth and a potential enhancer of chemotherapy in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Pulmonares/genética , Células Madre Neoplásicas/metabolismo , Tioestreptona/farmacología , Células A549 , Animales , Antibacterianos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Simulación por Computador , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Perfilación de la Expresión Génica/métodos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones Endogámicos NOD , Ratones SCID , MicroARNs/genética , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Células Madre Neoplásicas/patología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
7.
Exp Eye Res ; 185: 107678, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31129251

RESUMEN

Age-related meibomian gland (MG) atrophy, characterized by decreased meibocyte proliferation, is one of the causes of meibomian gland dysfunction (MGD), which leads to dry eye disease. Currently, there is no available treatment effectively preventing or reversing the decreased cell proliferation and acinar tissue atrophy. In this study, we investigated the therapeutic effects of a pigment epithelium-derived factor (PEDF) peptide in treating this condition. We found abundant expression of PEDF in the nucleus of acinar basal cells, but not in mature meibocytes, and that the expression levels were significantly decreased in the aged mice. We next treated the aged mice (15-month old) with atrophic MGs using a synthetic PEDF-derived peptide 29-mer (residues 93-121). We found that 29-mer effectively stimulated acinar basal cell proliferation and the following mature meibocyte proliferation in the atrophied MGs. In addition, the treatment increased ΔNp63 and Lrig1 expressions in acinar basal cells. Finally, the aged mice receiving the treatment showed MG growth and improved tear film break-up time. In conclusion, the 29-mer treatment is effective in promoting MG acinar basal cell proliferation and enlarging the acinar size of MG, as well as improving MG function in aged mice, suggesting a therapeutic potential of the PEDF-derived short peptide in ameliorating age-related MGD.


Asunto(s)
Envejecimiento/fisiología , Proteínas del Ojo/uso terapéutico , Glándulas Tarsales/efectos de los fármacos , Factores de Crecimiento Nervioso/uso terapéutico , Serpinas/uso terapéutico , Células Acinares/efectos de los fármacos , Células Acinares/metabolismo , Células Acinares/patología , Animales , Atrofia/tratamiento farmacológico , Atrofia/metabolismo , Atrofia/patología , Proliferación Celular/efectos de los fármacos , Conjuntiva/efectos de los fármacos , Síndromes de Ojo Seco/tratamiento farmacológico , Síndromes de Ojo Seco/metabolismo , Síndromes de Ojo Seco/patología , Proteínas del Ojo/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente Indirecta , Inmunohistoquímica , Inyecciones Intraoculares , Glándulas Tarsales/metabolismo , Glándulas Tarsales/patología , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Factores de Crecimiento Nervioso/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Serpinas/metabolismo , Lágrimas/fisiología , Transactivadores/metabolismo
8.
Gynecol Oncol ; 148(2): 383-392, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29208367

RESUMEN

OBJECTIVE: EpCAM is a transmembrane glycoprotein that functions as an epithelial marker in endometrial tissues. However, the correlation between EpCAM and endometrial carcinoma (EC) is not clear. METHODS: This study investigated the association between EpCAM and EC. Immunohistochemistry staining and bioinformatics analysis disclosed the clinical importance of low EpCAM expression. The migratory ability of cells expressing low EpCAM levels was studied in transwell invasion assays in vitro and an orthotopic intra-uterine tumor injection model in vivo. The Connectivity MAP was used to identify drugs that effectively inhibit cells with low EpCAM expression. RESULTS: According to immunohistochemistry analysis results, low EpCAM expression was associated with an advanced stage and lymph node metastasis in patients with endometrioid EC, and high EpCAM expression favored survival. EpCAM silencing promoted cell invasion, and EpCAM re-expression in EpCAM-silenced EC cells attenuated their invasiveness. EpCAM suppression in an orthotopic uterine implantation model promoted the lymph node metastasis of EC cells. According to quantitative PCR and promoter reporter analyses, estrogen receptor alpha signaling regulated EpCAM expression by enhancing its promoter activity. As shown in the Connectivity MAP analysis, transamin inhibited the invasiveness of EpCAM-silenced EC cells. CONCLUSIONS: The loss of EpCAM may increase the malignancy of EC, and these findings provide new insights into the prognostic role of EpCAM in patients with EC.


Asunto(s)
Neoplasias Endometriales/etiología , Molécula de Adhesión Celular Epitelial/fisiología , Animales , Antifibrinolíticos/farmacología , Línea Celular Tumoral , Progresión de la Enfermedad , Regulación hacia Abajo/fisiología , Molécula de Adhesión Celular Epitelial/antagonistas & inhibidores , Molécula de Adhesión Celular Epitelial/metabolismo , Receptor alfa de Estrógeno/fisiología , Femenino , Regulación Neoplásica de la Expresión Génica/fisiología , Silenciador del Gen/fisiología , Humanos , Estimación de Kaplan-Meier , Ratones Desnudos , Invasividad Neoplásica , Trasplante de Neoplasias/métodos , Pronóstico , Transducción de Señal/fisiología , Ácido Tranexámico/farmacología , Trasplante Heterólogo
9.
J Biol Chem ; 291(4): 1877-1889, 2016 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-26542803

RESUMEN

We previously demonstrated that the epidermal growth factor receptor (EGFR) up-regulated miR-7 to promote tumor growth during lung cancer oncogenesis. Several lines of evidence have suggested that alterations in chromatin remodeling components contribute to cancer initiation and progression. In this study, we identified SMARCD1 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily d, member 1) as a novel target gene of miR-7. miR-7 expression reduced SMARCD1 protein expression in lung cancer cell lines. We used luciferase reporters carrying wild type or mutated 3'UTR of SMARCD1 and found that miR-7 blocked SMARCD1 expression by binding to two seed regions in the 3'UTR of SMARCD1 and down-regulated SMARCD1 mRNA expression. Additionally, upon chemotherapy drug treatment, miR-7 down-regulated p53-dependent apoptosis-related gene BAX (BCL2-associated X protein) and p21 expression by interfering with the interaction between SMARCD1 and p53, thereby reducing caspase3 cleavage and the downstream apoptosis cascades. We found that although SMARCD1 sensitized lung cancer cells to chemotherapy drug-induced apoptosis, miR-7 enhanced the drug resistance potential of lung cancer cells against chemotherapy drugs. SMARCD1 was down-regulated in patients with non-small cell lung cancer and lung adenocarcinoma cell lines, and SMARCD1 and miR-7 expression levels were negatively correlated in clinical samples. Our investigation into the involvement of the EGFR-regulated microRNA pathway in the SWI/SNF chromatin remodeling complex suggests that EGFR-mediated miR-7 suppresses the coupling of the chromatin remodeling factor SMARCD1 with p53, resulting in increased chemo-resistance of lung cancer cells.


Asunto(s)
Apoptosis , Cromatina/metabolismo , Regulación de la Expresión Génica , Neoplasias Pulmonares/metabolismo , MicroARNs/metabolismo , Factores de Transcripción/genética , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Cromatina/genética , Proteínas Cromosómicas no Histona , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/fisiopatología , MicroARNs/genética , Unión Proteica , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/genética
10.
Nucleic Acids Res ; 43(Database issue): D862-7, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25398902

RESUMEN

We previously presented YM500, which is an integrated database for miRNA quantification, isomiR identification, arm switching discovery and novel miRNA prediction from 468 human smRNA-seq datasets. Here in this updated YM500v2 database (http://ngs.ym.edu.tw/ym500/), we focus on the cancer miRNome to make the database more disease-orientated. New miRNA-related algorithms developed after YM500 were included in YM500v2, and, more significantly, more than 8000 cancer-related smRNA-seq datasets (including those of primary tumors, paired normal tissues, PBMC, recurrent tumors, and metastatic tumors) were incorporated into YM500v2. Novel miRNAs (miRNAs not included in the miRBase R21) were not only predicted by three independent algorithms but also cleaned by a new in silico filtration strategy and validated by wetlab data such as Cross-Linked ImmunoPrecipitation sequencing (CLIP-seq) to reduce the false-positive rate. A new function 'Meta-analysis' is additionally provided for allowing users to identify real-time differentially expressed miRNAs and arm-switching events according to customer-defined sample groups and dozens of clinical criteria tidying up by proficient clinicians. Cancer miRNAs identified hold the potential for both basic research and biotech applications.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , MicroARNs/química , MicroARNs/metabolismo , Neoplasias/genética , Perfilación de la Expresión Génica , Humanos , Internet , Análisis de Secuencia de ARN
12.
Glycobiology ; 26(2): 155-65, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26447186

RESUMEN

Galectin-3 is a ubiquitous lectin exerting multiple cellular functions such as RNA splicing, protein trafficking and apoptosis. Its expression is positively correlated with the poor prognosis in lung cancer patients. Galectin-3 can promote cancer progression through its effects on cell proliferation, cell survival or cancer metastasis. However, the role of galectin-3 in the regulation of cancer stem-like cells (CSCs) is still unclear. Here, we investigated the hypothesis that galectin-3 might regulate lung CSCs via the EGF receptor (EGFR) signaling pathway. In our study, galectin-3 facilitated EGFR activation and enhanced the sphere formation activity of lung cancer cells. Furthermore, galectin-3 promoted Sox2 expression in an EGFR activation-dependent manner; importantly, forced expression of Sox2 blunted the effect of galectin-3 knockdown on lung cancer sphere formation ability. These results suggest that galectin-3 promotes EGFR activation leading to the upregulation of Sox2 expression and lung CSCs properties. Moreover, we showed that the carbohydrate-binding activity of galectin-3 was important for the regulation of EGFR activation, Sox2 expression and sphere formation. We have recently reported that c-Myc is a transcriptional activator of Sox2. We further found that galectin-3 enhanced c-Myc protein stability leading to increased c-Myc binding to the Sox2 gene promoter. We also examined the effect of the stemness factors, Oct4, Nanog and Sox2 on the expression of galectin-3. We found that Oct4 enhanced galectin-3 expression. Our results together suggest that galectin-3 enhances lung cancer stemness through the EGFR/c-Myc/Sox2 axis; Oct4, in turn, promotes galectin-3 expression, forming a positive regulatory loop in lung CSCs.


Asunto(s)
Receptores ErbB/metabolismo , Galectina 3/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal , Línea Celular Tumoral , Galectina 3/genética , Galectina 3/farmacología , Células HEK293 , Proteínas de Homeodominio/metabolismo , Humanos , Proteína Homeótica Nanog , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factores de Transcripción SOXB1/genética
13.
Stem Cells ; 31(12): 2607-19, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23940081

RESUMEN

Tumor cells have long been observed to share several biological characteristics with normal stem/progenitor cells; however, the oncogenic mechanisms underlying the lung stem/progenitor cell signaling remain elusive. Here, we report that SOX2, a self-renewal factor in lung stem/progenitor cells, is highly expressed in a subclass of lung cancer cells, the proliferation, survival, and chemoresistance of which are dependent on SOX2 signaling. Overexpression of SOX2 promotes oncogenic phenotypes in lung cancer cells; knockdown of SOX2 attenuated cell proliferation. We observed that SOX2 increased the expression of epidermal growth factor receptor (EGFR), and EGFR activation further upregulated SOX2 levels, forming a positive feedback loop. SOX2 expression promoted chemoresistance, and silencing of SOX2 perturbed mitochondrial function, causing marked apoptosis and autophagy. SOX2 induced BCL2L1, the ectopic expression of which rescued the effects of SOX2 silencing on apoptosis, autophagy, and mitochondrial function. SOX2 promoted tumor formation, along with increased cell proliferation in a xenograft mouse model. SOX2 expression is associated with poor prognosis in lung cancer patients; moreover, SOX2, EGFR, and BCL2L1 expression levels were significantly correlated in lung tumors. Our findings support the emerging role of SOX2 in cell proliferation and survival by eliciting oncogenic EGFR and BCL2L1 signaling with potential applications as a prognosis marker and a therapeutic target in lung cancer.


Asunto(s)
Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Factores de Transcripción SOXB1/metabolismo , Animales , Apoptosis/fisiología , Autofagia/fisiología , Procesos de Crecimiento Celular/fisiología , Línea Celular Tumoral , Cisplatino/farmacología , Resistencia a Antineoplásicos , Receptores ErbB/biosíntesis , Receptores ErbB/genética , Receptores ErbB/metabolismo , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Xenoinjertos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Ratones , Paclitaxel/farmacología , Factores de Transcripción SOXB1/genética , Transducción de Señal , Análisis de Supervivencia , Proteína bcl-X/metabolismo
14.
Carcinogenesis ; 34(8): 1708-16, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23563092

RESUMEN

Epidermal growth factor receptor (EGFR) is a membrane-bound receptor tyrosine kinase, which can transduce intracellular signals responsible for cell proliferation. It is frequently overexpressed and/or constitutively activated in non-small cell lung cancer and thus is considered as a major cause of this disease. Recently, EGFR has been found in the nucleus where the nuclear EGFR (nEGFR) can function as a transcription factor activating the transcription of genes such as cyclin D1 gene (CCND1), which is essential for cell proliferation. Nevertheless, how nEGFR's transcriptional activity is regulated remains unclear. Promyelocytic leukemia protein (PML) is a tumor suppressor, which is lost in various cancers including lung cancer. However, the role of PML in the suppression of lung cancer growth is still unclear. When we investigated the role of PML in the regulation of lung cancer cell growth, we found that PML isoform IV (PMLIV) preferentially represses the growth of lung cancer cells bearing constitutively active EGFR. Besides, when growing in the EGFR activating conditions, the growth of EGFR wild-type bearing A549 cells has been repressed by PMLIV overexpression. We also found that PMLIV can interact physically with nEGFR and represses the transcription of nEGFR target genes. We showed that PMLIV is recruited by nEGFR to the target promoters and reduces the promoter histone acetylation level via HDAC1. Together, our results suggest that PMLIV interacts with nEGFR upon EGFR activation and represses the transcription of nEGFR target genes such as CCND1 and thus leading to inhibition of the lung cancer cell growth.


Asunto(s)
Receptores ErbB/genética , Neoplasias Pulmonares/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Acetilación , Animales , Procesos de Crecimiento Celular/fisiología , Línea Celular , Línea Celular Tumoral , Ciclina D1/genética , Ciclina D1/metabolismo , Receptores ErbB/metabolismo , Femenino , Células HEK293 , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Proteína de la Leucemia Promielocítica , Isoformas de Proteínas , Factores de Transcripción/metabolismo , Transcripción Genética , Proteínas Supresoras de Tumor/metabolismo
15.
Nanomedicine ; 9(8): 1293-303, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23727098

RESUMEN

Acute lung injury (ALI) is a devastating clinical syndrome causing a substantial mortality, but to date without any effective pharmacological management in clinic. Here, we tested whether nanoparticles based on polyethylenimine (PEI) and DNA could be a potential treatment. In mouse model of ALI induced by lipopolysaccharide (LPS) (10mg/kg), intravenous injection of PEI/DNA mediated a rapid (in 6h) and short-lived transgene expression in lung, with alveolar epithelial cells as major targets. When ß2-Adrenergic Receptor (ß2AR) was applied as therapeutic gene, PEI/ß2AR treatment significantly attenuated the severity of ALI, including alveolar fluid clearance, lung water content, histopathology, bronchioalveolar lavage cellularity, protein concentration, and inflammatory cytokines in mice with pre-existing ALI. In high-dose LPS (40 mg/kg)-induced ALI, post-injury treatment of PEI/ß2AR significantly improved the 5-day survival of mice from 28% to 64%. These data suggest that PEI/DNA nanoparticles could be an effective agent in future clinical application for ALI treatment. FROM THE CLINICAL EDITOR: In this novel study, PEI/DNA nanoparticles are presented as an effective agent for the treatment of the devastating and currently untreatable syndrome of acute lung injury, using a rodent model system.


Asunto(s)
Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/terapia , ADN/uso terapéutico , Técnicas de Transferencia de Gen , Nanopartículas/química , Polietileneimina/química , Receptores Adrenérgicos beta/genética , Lesión Pulmonar Aguda/patología , Animales , ADN/administración & dosificación , ADN/genética , Expresión Génica , Terapia Genética , Pulmón/metabolismo , Pulmón/patología , Ratones
16.
Comput Biol Med ; 165: 107410, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37672928

RESUMEN

COVID-19 has a high rate of infection in dialysis patients and poses a serious risk to human health. Currently, there are no dialysis centers in China that have analyzed the prevalence of COVID-19 infection in dialysis patients and the mortality rate. Although machine learning-based disease prediction methods have proven to be effective, redundant attributes in the data and the interpretability of the predictive models are still worth investigating. Therefore, this paper proposed a wrapper feature selection classification model to achieve the prediction of the risk of COVID-19 infection in dialysis patients. The method was used to optimize the feature set of the sample through an enhanced JAYA optimization algorithm based on the dispersed foraging strategy and the greedy levy mutation strategy. Then, the proposed method combines fuzzy K-nearest neighbor for classification prediction. IEEE CEC2014 benchmark function experiments as well as prediction experiments on the uremia dataset are used to validate the proposed model. The experimental results showed that the proposed method has a high prediction accuracy of 95.61% for the prevalence risk of COVID-19 infection in dialysis patients. Furthermore, it was shown that proalbumin, CRP, direct bilirubin, hemoglobin, albumin, and phosphorus are of great value for clinical diagnosis. Therefore, the proposed method can be considered as a promising method.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Diálisis Renal , Algoritmos , Hospitalización , Aprendizaje Automático
17.
Comput Biol Med ; 162: 107075, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37276755

RESUMEN

"Treatise on Febrile Diseases" is an important classic book in the academic history of Chinese material medica. Based on the knowledge map of traditional Chinese medicine established by the study of "Treatise on Febrile Diseases", a question-answering system of traditional Chinese medicine was established to help people better understand and use traditional Chinese medicine. Intention classification is the basis of the question-answering system of traditional Chinese medicine, but as far as we know, there is no research on question intention classification based on "Treatise on Febrile Diseases". In this paper, the intent classification research is carried out based on the Chinese material medica-related content materials in "Treatise on Febrile Diseases" as data. Most of the existing models perform well on long text classification tasks, with high costs and a lot of memory requirements. However, the intent classification data of this paper has the characteristics of short text, a small amount of data, and unbalanced categories. In response to these problems, this paper proposes a knowledge distillation-based bidirectional Transformer encoder combined with a convolutional neural network model (TinyBERT-CNN), which is used for the task of question intent classification in "Treatise on Febrile Diseases". The model used TinyBERT as an embedding and encoding layer to obtain the global vector information of the text and then completed the intent classification by feeding the encoded feature information into the CNN. The experimental results indicated that the model outperformed other models in terms of accuracy, recall, and F1 values of 96.4%, 95.9%, and 96.2%, respectively. The experimental results prove that the model proposed in this paper can effectively classify the intent of the question sentences in "Treatise on Febrile Diseases", and provide technical support for the question-answering system of "Treatise on Febrile Diseases" later.


Asunto(s)
Intención , Redes Neurales de la Computación , Humanos , Lenguaje
18.
iScience ; 26(5): 106679, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37216098

RESUMEN

The domains of contemporary medicine and biology have generated substantial high-dimensional genetic data. Identifying representative genes and decreasing the dimensionality of the data can be challenging. The goal of gene selection is to minimize computing costs and enhance classification precision. Therefore, this article designs a new wrapper gene selection algorithm named artificial bee bare-bone hunger games search (ABHGS), which is the hunger games search (HGS) integrated with an artificial bee strategy and a Gaussian bare-bone structure to address this issue. To evaluate and validate the performance of our proposed method, ABHGS is compared to HGS and a single strategy embedded in HGS, six classic algorithms, and ten advanced algorithms on the CEC 2017 functions. The experimental results demonstrate that the bABHGS outperforms the original HGS. Compared to peers, it increases classification accuracy and decreases the number of selected features, indicating its actual engineering utility in spatial search and feature selection.

19.
Front Oncol ; 13: 1069284, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36895485

RESUMEN

Background: Few reports have investigated the oncologically safe timing of prophylactic inguinal lymphadenectomy for penile cancer patients with clinically normal inguinal lymph nodes (cN0), particularly those who received delayed surgical treatment. Methods: The study included pT1aG2, pT1b-3G1-3 cN0M0 patients with penile cancer who received prophylactic bilateral inguinal lymph nodes dissection (ILND) at the Department of Urology of Tangdu Hospital between October 2002 and August 2019. Patients who received simultaneous resection of primary tumor and inguinal lymph nodes were assigned to the immediate group, while the rest were assigned to the delayed group. The optimal timing of lymphadenectomy was determined based on the time-dependent ROC curves. The disease-specific survival (DSS) was estimated based on the Kaplan-Meier curve. Cox regression analysis was used to evaluate the associations between DSS and the timing of lymphadenectomy and tumor characteristics. The analyses were repeated after stabilized inverse probability of treatment weighting adjustment. Results: A total of 87 patients were enrolled in the study, 35 of them in the immediate group and 52 in the delayed group. The median (range) interval time between primary tumor resection and ILND of the delayed group was 85 (29-225) days. Multivariable Cox analysis demonstrated that immediate lymphadenectomy was associated with a significant survival benefit (HR, 0.11; 95% CI, 0.02-0.57; p = 0.009). An index of 3.5 months was determined as the optimal cut-point for dichotomization in the delayed group. In high-risk patients who received delayed surgical treatment, prophylactic inguinal lymphadenectomy within 3.5 months was associated with a significantly better DSS compared to dissection after 3.5months (77.8% and 0%, respectively; log-rank p<0.001). Conclusions: Immediate and prophylactic inguinal lymphadenectomy in high-risk cN0 patients (pT1bG3 and all higher stage tumours) with penile cancer improves survival. For those patients at high risk who received delayed surgical treatment for any reason, within 3.5 months after resection of the primary tumor seems to be an oncologically safe window for prophylactic inguinal lymphadenectomy.

20.
Comput Biol Med ; 148: 105885, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35930957

RESUMEN

Recurrent spontaneous abortion (RSA) is a frequent abnormal pregnancy with long-term psychological repercussions that disrupt the peace of the whole family. In the diagnosis and treatment of RSA worsened by thyroid disorders, recurrent spontaneous abortion is also a significant obstacle. The pathogenesis and possible treatment methods for RSA are yet unclear. Using clinical information, vitamin D and thyroid function measurements from normal pregnant women with RSA, we attempt to build a framework for conducting an effective analysis for RSA in this research. The framework is presented by combining the joint self-adaptive sime mould algorithm (JASMA) with the common kernel learning support vector machine with maximum-margin hyperplane theory, abbreviated as JASMA-SVM. The JASMA has a complete set of adaptive parameter change methods, which improves the algorithm's global search and optimization capabilities and guarantees that it speeds convergence and departs from the local optimum. On CEC 2014 benchmarks, the property of JASMA is validated, and then it is utilized to concurrently optimize parameters and select optimal features for SVM on RSA data from VitD, thyroid hormone levels, and thyroid autoantibodies. The statistical results demonstrate that the proposed JASMA-SVM can be treated as a potential tool for RSA with accuracy of 92.998%, MCC of 0.92425, sensitivity of 93.286%, specificity of 93.064%.


Asunto(s)
Aborto Habitual , Algoritmos , Femenino , Humanos , Embarazo , Máquina de Vectores de Soporte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA