Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Physiol Plant ; 175(6): e14055, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148188

RESUMEN

Patchouli alcohol, a significant bioactive component of the herbal plant Pogostemon cablin, has considerable medicinal and commercial potential. Several genes and transcription factors involved in the biosynthesis pathway of patchouli alcohol have been identified. However, so far, regulatory factors directly interacting with patchouli synthase (PTS) have not been reported. This study was conducted to analyze the interaction between PcENO3 and PcPTS to explore the molecular regulation effect of PcENO3 on patchouli alcohol biosynthesis. PcENO3, a homologous protein of Arabidopsis ENO3 belonging to the enolase family, was identified and characterized. Subcellular localization experiments in Arabidopsis protoplast cells indicated that the PcENO3 protein was localized in both the cytoplasm and nucleus. The physical interaction between PcENO3 and PcPTS was confirmed through yeast two-hybrid (Y2H), GST pull-down, and bimolecular fluorescence complementation assays. Furthermore, the Y2H assay demonstrated that PcENO3 could also interact with JAZ proteins in the JA pathway. Enzymatic assays showed that the interaction with PcENO3 increased the catalytic activity of patchoulol synthase. Additionally, suppression of PcENO3 expression with VIGS (virus-induced gene silencing) decreased patchouli alcohol content compared to the control. These findings suggest that PcENO3 interacts with patchoulol synthase and modulates patchoulol biosynthesis by enhancing the enzymatic activity of PcPTS.


Asunto(s)
Arabidopsis , Pogostemon , Sesquiterpenos , Pogostemon/genética , Pogostemon/metabolismo , Arabidopsis/metabolismo , Sesquiterpenos/metabolismo
2.
Zhongguo Zhong Yao Za Zhi ; 47(2): 412-418, 2022 Jan.
Artículo en Zh | MEDLINE | ID: mdl-35178983

RESUMEN

Farnesyl diphosphate synthase(FPPS) is a key enzyme at the branch point of the sesquiterpene biosynthetic pathway, but there are no reports on the transcriptional regulation of FPPS promoter in Pogostemon cabin. In the early stage of this study, we obtained the binding protein PcFBA-1 of FPPS gene promoter in P. cabin. In order to explore the possible mechanism of PcFBA-1 involved in the regulation of patchouli alcohol biosynthesis, this study performed PCR-based cloning and sequencing analysis of PcFBA-1, analyzed the expression patterns of PcFBA-1 in different tissues by fluorescence quantitative PCR and its subcellular localization using the protoplast transformation system, detected the binding of PcFBA-1 protein to the FPPS promoter in vitro with the yeast one-hybrid system, and verified its transcriptional regulatory function by dual-luciferase reporter gene assay. The findings demonstrated that the cloned PcFBA-1 had an open reading frame(ORF) of 1 131 bp, encoding a protein of 376 amino acids, containing two conserved domains named F-box-like superfamily and FBA-1 superfamily, and belonging to the F-box family. Moreover, neither signal peptide nor transmembrane domain was contained, implying that it was an unstable hydrophilic protein. In addition, as revealed by fluorescence quantitative PCR results, PcFBA-1 had the highest expression in leaves, and there was no significant difference in expression in roots or stems. PcFBA-1 protein was proved mainly located in the cytoplasm. Furthermore, yeast one-hybrid screening and dual-luciferase reporter gene assay showed that PcFBA-1 was able to bind to FPPS promoter both in vitro and in vivo to enhance the activity of FPPS promoter. In summary, this study identifies a new transcription factor PcFBA-1 in P. cabin, which directly binds to the FPPS gene promoter to enhance the promoter activity. This had laid a foundation for the biosynthesis of patchouli alcohol and other active ingre-dients and provided a basis for metabolic engineering and genetic improvement of P. cabin.


Asunto(s)
Pogostemon , Secuencia de Aminoácidos , Clonación Molecular , Geraniltranstransferasa/genética , Factores de Transcripción/genética
3.
Front Plant Sci ; 14: 1098280, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923120

RESUMEN

Pogostemon cablin is an important aromatic medicinal herb widely used in the pharmaceutical and perfume industries. However, our understanding of the phytochemical compounds and metabolites within P. cablin remains limited. To our knowledge, no integrated studies have hitherto been conducted on the metabolites of the aerial parts of P. cablin. In this study, twenty-three volatile compounds from the aerial parts of P. cablin were identified by GC-MS, predominantly sesquiterpenes. Quantitative analysis showed the highest level of patchouli alcohol in leaves (24.89 mg/g), which was 9.12 and 6.69-fold higher than in stems and flowers. UHPLC-QTOFMS was used to analyze the non-volatile compounds of leaf, stem and flower tissues. The differences in metabolites between flower and leaf tissues were the largest. Based on 112, 77 and 83 differential metabolites between flower-leaf, flower-stem and leaf-stem, three tissue-specific biomarkers of metabolites were identified, and the differential metabolites were enriched in several KEGG pathways. Furthermore, labeling differential metabolites in the primary and secondary metabolic pathways showed that flowers accumulated more lipids and amino acids, including proline, lysine and tryptophan; the leaves accumulated higher levels of terpenoids, vitamins and flavonoids, and stems contained higher levels of carbohydrate compounds. Based on the role of acetyl coenzyme A, the distribution and possible exchange mechanism of metabolites in leaves, stems and flowers of P. cablin were mapped for the first time, laying the groundwork for future research on the metabolites in P. cablin and their regulatory role.

4.
J Agric Food Chem ; 70(23): 7188-7201, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35654756

RESUMEN

The production of patchoulol in the patchouli (Pogostemon cablin) plant determines its application value, as it is the principal active sesquiterpene of essential oil extracted from this plant. Here, the promoter of patchoulol synthase gene (PatPTSpro) was isolated and found to be methyl jasmonate (MeJA)-induced. A nucleus-localized AP2/ERF transcription factor PatDREB was identified as a transcription activator binding to PatPTSpro, regulating patchoulol biosynthesis through modulating the gene expression. PatDREB also interacts with jasmonate ZIM-domain 4 (JAZ4). Furthermore, PatDREB could physically interact with the MYB-related transcription factor PatSWC4 and synergistically facilitate patchoulol biosynthesis. However, the transcriptional activation activity of the PatDREB-PatSWC4 complex could be inhibited by PatJAZ4, and JA could reverse this interference. Overall, we demonstrated the positive roles of PatDREB and the PatDREB-PatSWC4 complex in regulating patchoulol production, which advance our understanding of the regulatory network of patchoulol biosynthesis.


Asunto(s)
Sesquiterpenos , Factores de Transcripción , Ciclopentanos/farmacología , Regulación de la Expresión Génica de las Plantas , Isomerasas , Oxilipinas/farmacología , Sesquiterpenos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Front Plant Sci ; 13: 946629, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092423

RESUMEN

Farnesyl pyrophosphate synthase (FPPS) plays an important role in the synthesis of plant secondary metabolites, but its function and molecular regulation mechanism remain unclear in Pogostemon cablin. In this study, the full-length cDNA of the FPP synthase gene from P. cablin (PcFPPS) was cloned and characterized. The expressions of PcFPPS are different among different tissues (highly in P. cablin flowers). Subcellular localization analysis in protoplasts indicated that PcFPPS was located in the cytoplasm. PcFPPS functionally complemented the lethal FPPS deletion mutation in yeast CC25. Transient overexpression of PcFPPS in P. cablin leaves accelerated terpene biosynthesis, with an ~47% increase in patchouli alcohol. Heterologous overexpression of PcFPPS in tobacco plants was achieved, and it was found that the FPP enzyme activity was significantly up-regulated in transgenic tobacco by ELISA analysis. In addition, more terpenoid metabolites, including stigmasterol, phytol, and neophytadiene were detected compared with control by GC-MS analysis. Furthermore, with dual-LUC assay and yeast one-hybrid screening, we found 220 bp promoter of PcFPPS can be bound by the nuclear-localized transcription factor PcWRKY44. Overexpression of PcWRKY44 in P. cablin upregulated the expression levels of PcFPPS and patchoulol synthase gene (PcPTS), and then promote the biosynthesis of patchouli alcohol. Taken together, these results strongly suggest the PcFPPS and its binding transcription factor PcWRKY44 play an essential role in regulating the biosynthesis of patchouli alcohol.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA