Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 24(10): 3221-3230, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38416582

RESUMEN

The hydrolysis of hydrides, represented by MgH2, delivers substantial capacity and presents an appealing prospect for an on-site hydrogen supply. However, the sluggish hydrolysis kinetics and low hydrogen yield of MgH2 caused by the formation of a passivation Mg(OH)2 layer hinder its practical application. Herein, we present a dual strategy encompassing microstructural design and compounding, leading to the successful synthesis of a core-shell-like nanostructured MgH2@Mg(BH4)2 composite, which demonstrates excellent hydrolysis performance. Specifically, the optimal composite with a low Ea of 9.05 kJ mol-1 releases 2027.7 mL g-1 H2 in 60 min, and its hydrolysis rate escalates to 1356.7 mL g-1 min-1 H2 during the first minute at room temperature. The nanocoating Mg(BH4)2 plays a key role in enhancing the hydrolysis kinetics through the release of heat and the formation of local concentration of Mg2+ field after its hydrolysis. This work offers an innovative concept for the design of hydrolysis materials.

2.
J Colloid Interface Sci ; 634: 897-905, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36566635

RESUMEN

Aiming at the sluggish water dissociation step in alkaline hydrogen evolution reaction (HER), the platinum-nickel alloy material (PtNi10/C) featuring unique crystalline/amorphous structure supported on carbon black is deliberately designed and fabricated via a reversely rapid co-precipitation and mild thermal reduction strategy. Electrochemical results show that only 66 mV of overpotential is needed for PtNi10/C to drive a current density of 10 mA cm-2 at a lower platinum loading (8.3 µgPt cm-2 geo), which is much lower than that of other catalysts with a single metal source(S-Ni/C and S-Pt/C) and even the commercial Pt/C catalyst (20 wt%). The target catalyst also exhibits smaller tafel slope value (16.73 mV dec-1) and electrochemical impedance value, enabling a fast kinetics rate for water dissociation. Partial crystallization facilitates moderate adsorption of intermediates, while the high-valence Ni(II) and Pt(II) species serve as pivotal driving force for the kinetic dissociation of water. The unique microstructure of PtNi10/C shows a remarkable advantage toward HER in alkaline but acidic medium. In addition, other transition metal-based catalysts following the similar protocol are also fabricated and present varying degrees of HER performance. Hence, the facile and rapid co-precipitation/thermal reduction strategy proposed in this study provides some guidelines for designing high-efficiency alkaline HER catalysts.

3.
RSC Adv ; 12(11): 6533-6539, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35424624

RESUMEN

Hydrolysis of Mg-based materials is a promising technology for the development of portable hydrogen fuel cells. However, the Mg(OH)2 layer impedes the diffusion of water molecules into inner particles, resulting in sluggish hydrolysis performance. The hydrolysis performances of Mg-based materials (Mg, MgH2, MgH2-BM and MgH2-RBM) with water are effectively improved under light-activation. The hydrolysis performance could be tailored by the light energy (frequency and intensity). The combination of ball-milling and light-activation could further enhance the hydrolysis performance of MgH2. In particular, the hydrolysis yield of MgH2-RBM reached 95.7% of the theoretical yield under 90 W green light-activation. Thus, rasing the light energy (by using purple light and UV, or higher power lights) and the combination of ball-milling could lead to better hydrolysis performance of Mg-based materials. The Mg(OH)2 layer was considered as a barrier to MgH2 hydrolysis of MgH2. Interestingly, under light-activation, the Mg(OH)2 layer can act as a catalyst to enhance the decomposition of MgH2, and improve the hydrolysis yield and kinetics of Mg-based materials.

4.
Materials (Basel) ; 15(10)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35629760

RESUMEN

The risk of cracking in the early stage is a critical indicator of the performance of concrete structures. Concrete cracked when the tensile stresses caused by deformation under restraint conditions exceeded its tensile strength. This research aims at an accurate prediction of shrinkage cracking of concrete under constraints. Based on the theory of capillary tension under the concrete shrinkage mechanism, the method to test and compute the elastic modulus of a micro-matrix around the capillary, Et, was derived. Shrinkage and porosity determination tests were conducted to obtain the shrinkage values and confining stresses of concrete at different strength grades, different ages and under different restraint conditions, accordingly. Meanwhile, the proposed method of this research was used to obtain Et. The restraint stress given by Et was compared with the experimental result under the corresponding time. The results suggested a positive correlation between the elastic modulus of a micro-matrix around the capillary, Et, precomputed by the theory, and the static elastic modulus, Ec, and that the ratio between the two gradually decreased with the passage of time, which ranged from 2.8 to 3.1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA