Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 165(2): 331-42, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27058665

RESUMEN

Regulation of enhancer activity is important for controlling gene expression programs. Here, we report that a biochemical complex containing a potential chromatin reader, RACK7, and the histone lysine 4 tri-methyl (H3K4me3)-specific demethylase KDM5C occupies many active enhancers, including almost all super-enhancers. Loss of RACK7 or KDM5C results in overactivation of enhancers, characterized by the deposition of H3K4me3 and H3K27Ac, together with increased transcription of eRNAs and nearby genes. Furthermore, loss of RACK7 or KDM5C leads to de-repression of S100A oncogenes and various cancer-related phenotypes. Our findings reveal a RACK7/KDM5C-regulated, dynamic interchange between histone H3K4me1 and H3K4me3 at active enhancers, representing an additional layer of regulation of enhancer activity. We propose that RACK7/KDM5C functions as an enhancer "brake" to ensure appropriate enhancer activity, which, when compromised, could contribute to tumorigenesis.


Asunto(s)
Carcinogénesis , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Histona Demetilasas/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Técnicas de Inactivación de Genes , Xenoinjertos , Humanos , Ratones , Trasplante de Neoplasias , Receptores de Cinasa C Activada , Proteínas S100/genética , Transcripción Genética
2.
Mol Cell ; 82(6): 1156-1168.e7, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35219383

RESUMEN

N6-methyladenosine (m6A) methylation is co-transcriptionally deposited on mRNA, but a possible role of m6A on transcription remains poorly understood. Here, we demonstrate that the METTL3/METTL14/WTAP m6A methyltransferase complex (MTC) is localized to many promoters and enhancers and deposits the m6A modification on nascent transcripts, including pre-mRNAs, promoter upstream transcripts (PROMPTs), and enhancer RNAs. PRO-seq analyses demonstrate that nascent RNAs originating from both promoters and enhancers are significantly decreased in the METTL3-depleted cells. Furthermore, genes targeted by the Integrator complex for premature termination are depleted of METTL3, suggesting a potential antagonistic relationship between METTL3 and Integrator. Consistently, we found the Integrator complex component INTS11 elevated at promoters and enhancers upon loss of MTC or nuclear m6A binders. Taken together, our findings suggest that MTC-mediated m6A modification protects nascent RNAs from Integrator-mediated termination and promotes productive transcription, thus unraveling an unexpected layer of gene regulation imposed by RNA m6A modification.


Asunto(s)
Cromatina , Metiltransferasas , Cromatina/genética , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , ARN/genética , ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
3.
Cell ; 151(6): 1200-13, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23217707

RESUMEN

Ten-Eleven Translocation (Tet) family of dioxygenases dynamically regulates DNA methylation and has been implicated in cell lineage differentiation and oncogenesis. Yet their functions and mechanisms of action in gene regulation and embryonic development are largely unknown. Here, we report that Xenopus Tet3 plays an essential role in early eye and neural development by directly regulating a set of key developmental genes. Tet3 is an active 5mC hydroxylase regulating the 5mC/5hmC status at target gene promoters. Biochemical and structural studies further demonstrate that the Tet3 CXXC domain is critical for specific Tet3 targeting. Finally, we show that the enzymatic activity and CXXC domain are both crucial for Tet3's biological function. Together, these findings define Tet3 as a transcription regulator and reveal a molecular mechanism by which the 5mC hydroxylase and DNA binding activities of Tet3 cooperate to control target gene expression and embryonic development.


Asunto(s)
Dioxigenasas/química , Dioxigenasas/metabolismo , Ojo/embriología , Neurogénesis , Proteínas de Xenopus/química , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Animales , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/genética , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Proteínas de Xenopus/genética , Xenopus laevis/metabolismo
4.
Cell ; 150(6): 1135-46, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22980977

RESUMEN

DNA methylation at the 5 position of cytosine (5-mC) is a key epigenetic mark that is critical for various biological and pathological processes. 5-mC can be converted to 5-hydroxymethylcytosine (5-hmC) by the ten-eleven translocation (TET) family of DNA hydroxylases. Here, we report that "loss of 5-hmC" is an epigenetic hallmark of melanoma, with diagnostic and prognostic implications. Genome-wide mapping of 5-hmC reveals loss of the 5-hmC landscape in the melanoma epigenome. We show that downregulation of isocitrate dehydrogenase 2 (IDH2) and TET family enzymes is likely one of the mechanisms underlying 5-hmC loss in melanoma. Rebuilding the 5-hmC landscape in melanoma cells by reintroducing active TET2 or IDH2 suppresses melanoma growth and increases tumor-free survival in animal models. Thus, our study reveals a critical function of 5-hmC in melanoma development and directly links the IDH and TET activity-dependent epigenetic pathway to 5-hmC-mediated suppression of melanoma progression, suggesting a new strategy for epigenetic cancer therapy.


Asunto(s)
Citosina/análogos & derivados , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Melanoma/genética , Nevo/genética , 5-Metilcitosina/análogos & derivados , Citosina/metabolismo , Proteínas de Unión al ADN/genética , Dioxigenasas , Estudio de Asociación del Genoma Completo , Humanos , Isocitrato Deshidrogenasa/genética , Melanocitos/metabolismo , Melanoma/patología , Nevo/patología , Proteínas Proto-Oncogénicas/genética
5.
Nature ; 591(7849): 317-321, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33505026

RESUMEN

METTL3 (methyltransferase-like 3) mediates the N6-methyladenosine (m6A) methylation of mRNA, which affects the stability of mRNA and its translation into protein1. METTL3 also binds chromatin2-4, but the role of METTL3 and m6A methylation in chromatin is not fully understood. Here we show that METTL3 regulates mouse embryonic stem-cell heterochromatin, the integrity of which is critical for silencing retroviral elements and for mammalian development5. METTL3 predominantly localizes to the intracisternal A particle (IAP)-type family of endogenous retroviruses. Knockout of Mettl3 impairs the deposition of multiple heterochromatin marks onto METTL3-targeted IAPs, and upregulates IAP transcription, suggesting that METTL3 is important for the integrity of IAP heterochromatin. We provide further evidence that RNA transcripts derived from METTL3-bound IAPs are associated with chromatin and are m6A-methylated. These m6A-marked transcripts are bound by the m6A reader YTHDC1, which interacts with METTL3 and in turn promotes the association of METTL3 with chromatin. METTL3 also interacts physically with the histone 3 lysine 9 (H3K9) tri-methyltransferase SETDB1 and its cofactor TRIM28, and is important for their localization to IAPs. Our findings demonstrate that METTL3-catalysed m6A modification of RNA is important for the integrity of IAP heterochromatin in mouse embryonic stem cells, revealing a mechanism of heterochromatin regulation in mammals.


Asunto(s)
Ensamble y Desensamble de Cromatina , Heterocromatina/genética , Heterocromatina/metabolismo , Metiltransferasas/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Animales , Retrovirus Endógenos/genética , Regulación de la Expresión Génica , Genes de Partícula A Intracisternal/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/química , Histonas/metabolismo , Ratones , Proteína 28 que Contiene Motivos Tripartito/metabolismo
6.
Development ; 148(10)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34032267

RESUMEN

The choroid plexus (ChP) produces cerebrospinal fluid and forms an essential brain barrier. ChP tissues form in each brain ventricle, each one adopting a distinct shape, but remarkably little is known about the mechanisms underlying ChP development. Here, we show that epithelial WNT5A is crucial for determining fourth ventricle (4V) ChP morphogenesis and size in mouse. Systemic Wnt5a knockout, or forced Wnt5a overexpression beginning at embryonic day 10.5, profoundly reduced ChP size and development. However, Wnt5a expression was enriched in Foxj1-positive epithelial cells of 4V ChP plexus, and its conditional deletion in these cells affected the branched, villous morphology of the 4V ChP. We found that WNT5A was enriched in epithelial cells localized to the distal tips of 4V ChP villi, where WNT5A acted locally to activate non-canonical WNT signaling via ROR1 and ROR2 receptors. During 4V ChP development, MEIS1 bound to the proximal Wnt5a promoter, and gain- and loss-of-function approaches demonstrated that MEIS1 regulated Wnt5a expression. Collectively, our findings demonstrate a dual function of WNT5A in ChP development and identify MEIS transcription factors as upstream regulators of Wnt5a in the 4V ChP epithelium.


Asunto(s)
Plexo Coroideo/embriología , Epitelio/metabolismo , Cuarto Ventrículo/embriología , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Proteína Wnt-5a/metabolismo , Animales , Encéfalo/embriología , Sistemas CRISPR-Cas/genética , Línea Celular , Células Epiteliales/metabolismo , Femenino , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Regiones Promotoras Genéticas/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Transducción de Señal/fisiología , Proteína Wnt-5a/genética
7.
Nature ; 559(7715): 637-641, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30022161

RESUMEN

Diabetes is a complex metabolic syndrome that is characterized by prolonged high blood glucose levels and frequently associated with life-threatening complications1,2. Epidemiological studies have suggested that diabetes is also linked to an increased risk of cancer3-5. High glucose levels may be a prevailing factor that contributes to the link between diabetes and cancer, but little is known about the molecular basis of this link and how the high glucose state may drive genetic and/or epigenetic alterations that result in a cancer phenotype. Here we show that hyperglycaemic conditions have an adverse effect on the DNA 5-hydroxymethylome. We identify the tumour suppressor TET2 as a substrate of the AMP-activated kinase (AMPK), which phosphorylates TET2 at serine 99, thereby stabilizing the tumour suppressor. Increased glucose levels impede AMPK-mediated phosphorylation at serine 99, which results in the destabilization of TET2 followed by dysregulation of both 5-hydroxymethylcytosine (5hmC) and the tumour suppressive function of TET2 in vitro and in vivo. Treatment with the anti-diabetic drug metformin protects AMPK-mediated phosphorylation of serine 99, thereby increasing TET2 stability and 5hmC levels. These findings define a novel 'phospho-switch' that regulates TET2 stability and a regulatory pathway that links glucose and AMPK to TET2 and 5hmC, which connects diabetes to cancer. Our data also unravel an epigenetic pathway by which metformin mediates tumour suppression. Thus, this study presents a new model for how a pernicious environment can directly reprogram the epigenome towards an oncogenic state, offering a potential strategy for cancer prevention and treatment.


Asunto(s)
Adenilato Quinasa/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Diabetes Mellitus/metabolismo , Glucosa/metabolismo , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animales , ADN/química , ADN/metabolismo , Metilación de ADN , Diabetes Mellitus/genética , Dioxigenasas , Estabilidad de Enzimas , Epigénesis Genética , Hemoglobina Glucada/análisis , Humanos , Hiperglucemia/metabolismo , Metformina/farmacología , Metformina/uso terapéutico , Ratones , Ratones Desnudos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Fosforilación , Fosfoserina/metabolismo , Especificidad por Sustrato , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Hum Mol Genet ; 30(22): 2110-2122, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34196368

RESUMEN

The well-established functions of UHRF1 converge to DNA biological processes, as exemplified by DNA methylation maintenance and DNA damage repair during cell cycles. However, the potential effect of UHRF1 on RNA metabolism is largely unexplored. Here, we revealed that UHRF1 serves as a novel alternative RNA splicing regulator. The protein interactome of UHRF1 identified various splicing factors. Among them, SF3B3 could interact with UHRF1 directly and participate in UHRF1-regulated alternative splicing events. Furthermore, we interrogated the RNA interactome of UHRF1, and surprisingly, we identified U snRNAs, the canonical spliceosome components, in the purified UHRF1 complex. Unexpectedly, we found H3R2 methylation status determines the binding preference of U snRNAs, especially U2 snRNAs. The involvement of U snRNAs in UHRF1-containing complex and their binding preference to specific chromatin configuration imply a finely orchestrated mechanism at play. Our results provided the resources and pinpointed the molecular basis of UHRF1-mediated alternative RNA splicing, which will help us better our understanding of the physiological and pathological roles of UHRF1 in disease development.


Asunto(s)
Empalme Alternativo , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Histonas/metabolismo , Factores de Empalme de ARN/metabolismo , ARN Nuclear Pequeño/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Humanos , Metilación , Complejos Multiproteicos , Conformación de Ácido Nucleico , Unión Proteica , ARN Nuclear Pequeño/metabolismo , Ubiquitina-Proteína Ligasas/genética
9.
Hum Genomics ; 16(1): 51, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36316717

RESUMEN

BACKGROUND: Syndromic congenital heart disease (CHD) is among the most severe conditions in the pediatric population. Copy number variant (CNV) is an important cause of syndromic CHD, but few studies focused on CNVs related to these patients in China. The present study aimed to identify pathogenic CNVs associated with syndromic CHD in the Chinese population. METHODS: A total of 109 sporadic patients with syndromic CHD were applied chromosomal microarray analysis (CMA). Phenotype spectrum of pathogenic or likely pathogenic CNVs was analyzed. CHD-related genes were prioritized from genes within pathogenic or likely pathogenic CNVs by VarElect, OVA, AMELIE, and ToppGene. RESULTS: Using CMA, we identified 43 candidate CNVs in 37/109 patients. After filtering CNVs present in the general population, 29 pathogenic/likely pathogenic CNVs in 24 patients were identified. The diagnostic yield of CMA for pathogenic/likely pathogenic CNVs was 23.1% (24/104), excluding 5 cases with aneuploidies or gross chromosomal aberrations. The overlapping analysis of CHD-related gene lists from different prioritization tools highlighted 16 CHD candidate genes. CONCLUSION: As the first study focused on CNVs in syndromic CHD from the Chinese population, this study reveals the importance of CMA in exploring the genetic etiology of syndromic CHD and expands our understanding of these complex diseases. The bioinformatic analysis of candidate genes suggests several CHD-related genes for further functional research.


Asunto(s)
Variaciones en el Número de Copia de ADN , Cardiopatías Congénitas , Humanos , Niño , Variaciones en el Número de Copia de ADN/genética , Cardiopatías Congénitas/genética , Aberraciones Cromosómicas , Análisis por Micromatrices , Pueblo Asiatico/genética
10.
Mol Cell ; 57(6): 957-970, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25684206

RESUMEN

Lysine-specific demethylase 1 (LSD1) has been reported to repress and activate transcription by mediating histone H3K4me1/2 and H3K9me1/2 demethylation, respectively. The molecular mechanism that underlies this dual substrate specificity has remained unknown. Here we report that an isoform of LSD1, LSD1+8a, does not have the intrinsic capability to demethylate H3K4me2. Instead, LSD1+8a mediates H3K9me2 demethylation in collaboration with supervillin (SVIL), a new LSD1+8a interacting protein. LSD1+8a knockdown increases H3K9me2, but not H3K4me2, levels at its target promoters and compromises neuronal differentiation. Importantly, SVIL co-localizes to LSD1+8a-bound promoters, and its knockdown mimics the impact of LSD1+8a loss, supporting SVIL as a cofactor for LSD1+8a in neuronal cells. These findings provide insight into mechanisms by which LSD1 mediates H3K9me demethylation and highlight alternative splicing as a means by which LSD1 acquires selective substrate specificities (H3K9 versus H3K4) to differentially control specific gene expression programs in neurons.


Asunto(s)
Histona Demetilasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Neuronas/metabolismo , Empalme Alternativo , Diferenciación Celular , Movimiento Celular , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HeLa , Histona Demetilasas/genética , Histonas/genética , Histonas/metabolismo , Humanos , Lisina/metabolismo , Proteínas de la Membrana/genética , Metilación , Proteínas de Microfilamentos/genética , Neuronas/citología , Regiones Promotoras Genéticas , Isoformas de Proteínas/metabolismo
11.
Genome Res ; 29(2): 270-280, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30670627

RESUMEN

Aberrant DNA methylation is a distinguishing feature of cancer. Yet, how methylation affects immune surveillance and tumor metastasis remains ambiguous. We introduce a novel method, Guide Positioning Sequencing (GPS), for precisely detecting whole-genome DNA methylation with cytosine coverage as high as 96% and unbiased coverage of GC-rich and repetitive regions. Systematic comparisons of GPS with whole-genome bisulfite sequencing (WGBS) found that methylation difference between gene body and promoter is an effective predictor of gene expression with a correlation coefficient of 0.67 (GPS) versus 0.33 (WGBS). Moreover, Methylation Boundary Shift (MBS) in promoters or enhancers is capable of modulating expression of genes associated with immunity and tumor metabolism. Furthermore, aberrant DNA methylation results in tissue-specific enhancer switching, which is responsible for altering cell identity during liver cancer development. Altogether, we demonstrate that GPS is a powerful tool with improved accuracy and efficiency over WGBS in simultaneously detecting genome-wide DNA methylation and genomic variation. Using GPS, we show that aberrant DNA methylation is associated with altering cell identity and immune surveillance networks, which may contribute to tumorigenesis and metastasis.


Asunto(s)
Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Análisis de Secuencia de ADN/métodos , Carcinogénesis/genética , Línea Celular Tumoral , Elementos de Facilitación Genéticos , Genoma Humano , Humanos , Vigilancia Inmunológica/genética , Hígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Metástasis de la Neoplasia , Regiones Promotoras Genéticas , Proteínas Ribosómicas/genética
12.
EMBO Rep ; 21(10): e49425, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32929842

RESUMEN

The host immune response is a fundamental mechanism for attenuating cancer progression. Here we report a role for the DNA demethylase and tumor suppressor TET2 in host anti-tumor immunity. Deletion of Tet2 in mice elevates IL-6 levels upon tumor challenge. Elevated IL-6 stimulates immunosuppressive granulocytic myeloid-derived suppressor cells (G-MDSCs), which in turn reduce CD8+ T cells upon tumor challenge. Consequently, systematic knockout of Tet2 in mice leads to accelerated syngeneic tumor growth, which is constrained by anti-PD-1 blockade. Removal of G-MDSCs by the anti-mouse Ly6g antibodies restores CD8+ T-cell numbers in Tet2-/- mice and reboots their anti-tumor activity. Importantly, anti-IL-6 antibody treatment blocks the expansion of G-MDSCs and inhibits syngeneic tumor growth. Collectively, these findings reveal a TET2-mediated IL-6/G-MDSCs/CD8+ T-cell immune response cascade that safeguards host adaptive anti-tumor immunity, offering a cell non-autonomous mechanism of TET2 for tumor suppression.


Asunto(s)
Células Supresoras de Origen Mieloide , Neoplasias , Inmunidad Adaptativa , Animales , Linfocitos T CD8-positivos , Recuento de Células , Proteínas de Unión al ADN/genética , Dioxigenasas , Ratones , Neoplasias/genética , Proteínas Proto-Oncogénicas/genética
13.
Mol Cell ; 56(2): 298-310, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25263594

RESUMEN

BS69 (also called ZMYND11) contains tandemly arranged PHD, BROMO, and PWWP domains, which are chromatin recognition modalities. Here, we show that BS69 selectively recognizes histone variant H3.3 lysine 36 trimethylation (H3.3K36me3) via its chromatin-binding domains. We further identify BS69 association with RNA splicing regulators, including the U5 snRNP components of the spliceosome, such as EFTUD2. Remarkably, RNA sequencing shows that BS69 mainly regulates intron retention (IR), which is the least understood RNA alternative splicing event in mammalian cells. Biochemical and genetic experiments demonstrate that BS69 promotes IR by antagonizing EFTUD2 through physical interactions. We further show that regulation of IR by BS69 also depends on its binding to H3K36me3-decorated chromatin. Taken together, our study identifies an H3.3K36me3-specific reader and a regulator of IR and reveals that BS69 connects histone H3.3K36me3 to regulated RNA splicing, providing significant, important insights into chromatin regulation of pre-mRNA processing.


Asunto(s)
Empalme Alternativo , Proteínas Portadoras/metabolismo , Cromatina/metabolismo , Histonas/metabolismo , Precursores del ARN/genética , ARN Mensajero/genética , Secuencia de Bases , Proteínas Portadoras/genética , Proteínas de Ciclo Celular , Línea Celular Tumoral , Cromatina/genética , Proteínas Co-Represoras , Metilación de ADN/genética , Proteínas de Unión al ADN , Células HeLa , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Humanos , Intrones/genética , Lisina/genética , Lisina/metabolismo , Factores de Elongación de Péptidos/antagonistas & inhibidores , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Interferencia de ARN , Procesamiento Postranscripcional del ARN/genética , ARN Interferente Pequeño , Ribonucleoproteína Nuclear Pequeña U5/antagonistas & inhibidores , Ribonucleoproteína Nuclear Pequeña U5/genética , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Análisis de Secuencia de ARN , Empalmosomas/genética
14.
Nucleic Acids Res ; 48(9): 4827-4838, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32286661

RESUMEN

NONO is a DNA/RNA-binding protein, which plays a critical regulatory role during cell stage transitions of mouse embryonic stem cells (mESCs). However, its function in neuronal lineage commitment and the molecular mechanisms of its action in such processes are largely unknown. Here we report that NONO plays a key role during neuronal differentiation of mESCs. Nono deletion impedes neuronal lineage commitment largely due to a failure of up-regulation of specific genes critical for neuronal differentiation. Many of the NONO regulated genes are also DNA demethylase TET1 targeted genes. Importantly, re-introducing wild type NONO to the Nono KO cells, not only restores the normal expression of the majority of NONO/TET1 coregulated genes but also rescues the defective neuronal differentiation of Nono-deficient mESCs. Mechanistically, our data shows that NONO directly interacts with TET1 via its DNA binding domain and recruits TET1 to genomic loci to regulate 5-hydroxymethylcytosine levels. Nono deletion leads to a significant dissociation of TET1 from chromatin and dysregulation of DNA hydroxymethylation of neuronal genes. Taken together, our findings reveal a key role and an epigenetic mechanism of action of NONO in regulation of TET1-targeted neuronal genes, offering new functional and mechanistic understanding of NONO in stem cell functions, lineage commitment and specification.


Asunto(s)
Cromatina/enzimología , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Células Madre Embrionarias de Ratones/metabolismo , Neurogénesis/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Unión al ARN/fisiología , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animales , Células Cultivadas , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Ratones , Proteínas Proto-Oncogénicas/química , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , RNA-Seq , Transcripción Genética
15.
J Cell Physiol ; 236(7): 5411-5420, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33595095

RESUMEN

Autoimmune hepatitis (AIH) is an immune-mediated inflammatory liver disease for which the pathogenesis remains incompletely understood. The current study aimed to reveal key biological processes and immune cells implicated in AIH by integrated bioinformatic analysis. The global gene expression in livers from wild-type BALB/c mice, mice with Tgfb1 deficiency, and mice with both Tgfb1 and Ifng deficiency was assessed by microarray data analysis. Differentially expressed genes were identified and subjected to functional enrichment analysis. AIH mice with Tgfb1 deletion showed significantly enhanced immune responses but impaired metabolic processes, whereas increased T cell activation and cytokine production, but weakened organic acid and lipid metabolic processes were observed in mice with deletion of both Tgfb1 and Ifng. In addition, infiltration of immune cells was evaluated by CIBERSORT. Increased infiltration of T cells, macrophages, and natural killer cells, and decreased infiltration of neutrophils, eosinophils, plasma cells, and B cells were observed in AIH mice. In conclusion, we identified potential biological processes and immune cells that contributed to AIH; further investigations are needed to confirm these findings and thus provide a potential novel therapeutic target for AIH treatment.


Asunto(s)
Hepatitis Autoinmune , Animales , Biología Computacional , Hepatitis Autoinmune/genética , Hepatitis Autoinmune/inmunología , Hepatitis Autoinmune/patología , Interferón gamma/deficiencia , Interferón gamma/genética , Ratones , Ratones Endogámicos BALB C , Transcriptoma , Factor de Crecimiento Transformador beta1/genética
17.
Cell Tissue Res ; 380(1): 143-153, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31811407

RESUMEN

We recently reported low-density lipoprotein receptor-related protein 6 (LRP6) decreased in dilated cardiomyopathy hearts, and cardiac-specific knockout mice displayed lethal heart failure through activation of dynamin-related protein 1 (Drp1). We also observed lipid accumulation in LRP6 deficiency hearts, but the detailed molecular mechanisms are unclear. Here, we detected fatty acids components in LRP6 deficiency hearts and explored the potential molecular mechanisms. Fatty acid analysis by GC-FID/MS revealed cardiac-specific LRP6 knockout induced the higher level of total fatty acids and some medium-long-chain fatty acids (C16:0, C18:1n9 and C18:2n6) than in control hearts. Carnitine palmitoyltransferase 1b (CPT1b), a rate-limiting enzyme of mitochondrial ß-oxidation in adult heart, was sharply decreased in LRP6 deficiency hearts, coincident with the activation of Drp1. Drp1 inhibitor greatly improved cardiac dysfunction and attenuated the increase in total fatty acids and fatty acids C16:0, C18:1n9 in LRP6 deficiency hearts. It also greatly inhibited the decrease in the cardiac expression of CPT1b and the transcriptional factors CCCTC-binding factor (CTCF) and c-Myc induced by cardiac-specific LRP6 knockout in mice. C-Myc but not CTCF was identified to regulate CPT1b expression and lipid accumulation in cardiomyocytes in vitro. The present study indicated cardiac-specific LRP6 knockout induced lipid accumulation by Drp1/CPT1b pathway in adult mice, and c-Myc is involved in the process. It suggests that LRP6 regulates fatty acid metabolism in adult heart.


Asunto(s)
Carnitina O-Palmitoiltransferasa/metabolismo , Dinaminas/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Dinaminas/deficiencia , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/deficiencia , Masculino , Ratones , Ratones Noqueados , Transducción de Señal , Transfección
18.
Genes Dev ; 26(12): 1364-75, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22713873

RESUMEN

The histone H3 Lys 27 (H3K27) demethylase JMJD3 has been shown to play important roles in transcriptional regulation and cell differentiation. However, the mechanism underlying JMJD3-mediated transcriptional regulation remains incompletely understood. Here we show that JMJD3 is associated with KIAA1718, whose substrates include dimethylated H3K27 (H3K27me2), and proteins involved in transcriptional elongation. JMJD3 and KIAA1718 directly bind to and regulate the expression of a plethora of common target genes in both a demethylase activity-dependent and -independent manner in the human promyelocytic leukemia cell line HL-60. We found that JMJD3 and KIAA1718 collaborate to demethylate trimethylated H3K27 (H3K27me3) on a subset of their target genes, some of which are bivalently marked by H3K4me3 and H3K27me3 and associated with promoter-proximal, paused RNA polymerase II (Pol II) before activation. Reduction of either JMJD3 or KIAA1718 diminishes Pol II traveling along the gene bodies of the affected genes while having no effect on the promoter-proximal Pol II. Furthermore, JMJD3 and KIAA1718 also play a role in localizing elongation factors SPT6 and SPT16 to the target genes. Our results support the model whereby JMJD3 activates bivalent gene transcription by demethylating H3K27me3 and promoting transcriptional elongation. Taken together, these findings provide new insight into the mechanisms by which JMJD3 regulates gene expression.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Lisina/metabolismo , Transcripción Genética , Sitios de Unión , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HL-60 , Humanos , Macrófagos/citología , Metilación/efectos de los fármacos , Modelos Biológicos , Fenotipo , ARN Polimerasa II/metabolismo , Acetato de Tetradecanoilforbol/farmacología , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos
19.
Mol Cell ; 43(2): 275-284, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21777816

RESUMEN

Histone methylation occurs on both lysine and arginine residues, and its dynamic regulation plays a critical role in chromatin biology. Here we identify the UHRF1 PHD finger (PHD(UHRF1)), an important regulator of DNA CpG methylation, as a histone H3 unmodified arginine 2 (H3R2) recognition modality. This conclusion is based on binding studies and cocrystal structures of PHD(UHRF1) bound to histone H3 peptides, where the guanidinium group of unmodified R2 forms an extensive intermolecular hydrogen bond network, with methylation of H3R2, but not H3K4 or H3K9, disrupting complex formation. We have identified direct target genes of UHRF1 from microarray and ChIP studies. Importantly, we show that UHRF1's ability to repress its direct target gene expression is dependent on PHD(UHRF1) binding to unmodified H3R2, thereby demonstrating the functional importance of this recognition event and supporting the potential for crosstalk between histone arginine methylation and UHRF1 function.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/química , Eucromatina/genética , Regulación de la Expresión Génica , Histonas/química , Sitios de Unión , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Islas de CpG , Metilación de ADN , Epigénesis Genética , Eucromatina/metabolismo , Células HCT116 , Histonas/genética , Histonas/metabolismo , Humanos , Enlace de Hidrógeno , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas
20.
Mol Cell ; 44(3): 373-84, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-22055184

RESUMEN

Demethylation by the AlkB dioxygenases represents an important mechanism for repair of N-alkylated nucleotides. However, little is known about their functions in mammalian cells. We report the purification of the ALKBH3 complex and demonstrate its association with the activating signal cointegrator complex (ASCC). ALKBH3 is overexpressed in various cancers, and both ALKBH3 and ASCC are important for alkylation damage resistance in these tumor cell lines. ASCC3, the largest subunit of ASCC, encodes a 3'-5' DNA helicase, whose activity is crucial for the generation of single-stranded DNA upon which ALKBH3 preferentially functions for dealkylation. In cell lines that are dependent on ALKBH3 and ASCC3 for alkylation damage resistance, loss of ALKBH3 or ASCC3 leads to increased 3-methylcytosine and reduced cell proliferation, which correlates with pH2A.X and 53BP1 foci formation. Our data provide a molecular mechanism by which ALKBH3 collaborates with ASCC to maintain genomic integrity in a cell-type specific manner.


Asunto(s)
Proliferación Celular , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Dioxigenasas/metabolismo , Neoplasias de la Próstata/enzimología , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB , Alquilación , Animales , Antineoplásicos Alquilantes/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , Dioxigenasas/genética , Relación Dosis-Respuesta a Droga , Células HEK293 , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Metilmetanosulfonato , Ratones , Ratones Endogámicos NOD , Mutación , Trasplante de Neoplasias , Fosforilación , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Interferencia de ARN , Factores de Tiempo , Transfección , Carga Tumoral , Proteína 1 de Unión al Supresor Tumoral P53
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA