Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Cell ; 34(11): 4409-4427, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36000899

RESUMEN

Ascorbic acid (AsA) is a multifunctional phytonutrient that is essential for the human diet as well as plant development. While much is known about AsA biosynthesis in plants, how this process is regulated in tomato (Solanum lycopersicum) fruits remains unclear. Here, we found that auxin treatment inhibited AsA accumulation in the leaves and pericarps of tomato. The auxin response factor gene SlARF4 is induced by auxin to mediate auxin-induced inhibition of AsA accumulation. Specifically, SlARF4 transcriptionally inhibits the transcription factor gene SlMYB11, thereby modulating AsA accumulation by regulating the transcription of the AsA biosynthesis genes l-galactose-1-phosphate phosphatase, l-galactono-1,4-lactone dehydrogenase, and dehydroascorbate. By contrast, abscisic acid (ABA) treatment increased AsA accumulation in tomato under drought stress. ABA induced the expression of the mitogen-activated protein kinase gene SlMAPK8. We demonstrate that SlMAPK8 phosphorylates SlARF4 and inhibits its transcriptional activity, whereas SlMAPK8 phosphorylates SlMYB11 and activates its transcriptional activity. SlMAPK8 functions in ABA-induced AsA accumulation and drought stress tolerance. Moreover, ABA antagonizes the effects of auxin on AsA biosynthesis. Therefore, auxin- and ABA-induced regulation of AsA accumulation is mediated by the SlMAPK8-SlARF4-SlMYB11 module in tomato during fruit development and drought stress responses, shedding light on the roles of phytohormones in regulating AsA accumulation to mediate stress tolerance.


Asunto(s)
Ácido Abscísico , Ácido Ascórbico , Sequías , Ácidos Indolacéticos , Proteínas de Plantas , Solanum lycopersicum , Estrés Fisiológico , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Ácido Ascórbico/biosíntesis , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant Biotechnol J ; 20(6): 1213-1225, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35258157

RESUMEN

Postharvest deterioration is among the major challenges for the fruit industry. Regulation of the fruit softening rate is an effective strategy for extending shelf-life and reducing the economic losses due postharvest deterioration. The tomato myoinositol monophosphatase 3 gene SlIMP3, which showed highest expression level in fruit, was expressed and purified. SlIMP3 demonstrated high affinity with the L-Gal 1-P and D-Ins 3-P, and acted as a bifunctional enzyme in the biosynthesis of AsA and myoinositol. Overexpression of SlIMP3 not only improved AsA and myoinositol content, but also increased cell wall thickness, improved fruit firmness, delayed fruit softening, decreased water loss, and extended shelf-life. Overexpression of SlIMP3 also increased uronic acid, rhamnose, xylose, mannose, and galactose content in cell wall of fruit. Treating fruit with myoinositol obtained similar fruit phenotypes of SlIMP3-overexpressed fruit, with increased cell wall thickness and delayed fruit softening. Meanwhile, overexpression of SlIMP3 conferred tomato fruit tolerance to Botrytis cinerea. The function of SlIMP3 in cell wall biogenesis and fruit softening were also verified using another tomato species, Ailsa Craig (AC). Overexpression of SlDHAR in fruit increased AsA content, but did not affect the cell wall thickness or fruit firmness and softening. The results support a critical role for SlIMP3 in AsA biosynthesis and cell wall biogenesis, and provide a new method of delaying tomato fruit softening, and insight into the link between AsA and cell wall metabolism.


Asunto(s)
Solanum lycopersicum , Ácido Ascórbico , Pared Celular/metabolismo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Inositol/metabolismo , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
J Exp Bot ; 72(10): 3806-3820, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33619530

RESUMEN

Tomato trichomes act as a mechanical and chemical barrier against pests. An R2R3 MYB transcription factor gene, SlMYB75, is highly expressed in type II, V, and VI trichomes. SlMYB75 protein is located in the nucleus and possesses transcriptional activation activity. Down-regulation of SlMYB75 increased the formation of type II, V, and VI trichomes, accumulation of δ-elemene, ß-caryophyllene, and α-humulene in glandular trichomes, and tolerance to spider mites in tomato. In contrast, overexpression of SlMYB75 inhibited trichome formation and sesquiterpene accumulation, and increased plant sensitivity to spider mites. RNA-Seq analyses of the SlMYB75 RNAi line indicated massive perturbation of the transcriptome, with a significant impact on several classes of transcription factors. Expression of the MYB genes SlMYB52 and SlTHM1 was strongly reduced in the RNAi line and increased in the SlMYB75-overexpressing line. SlMYB75 protein interacted with SlMYB52 and SlTHM1 and activated their expression. SlMYB75 directly targeted the promoter of the cyclin gene SlCycB2, increasing its activity. The auxin response factor SlARF4 directly targeted the promoter of SlMYB75 and inhibited its expression. SlMYB75 also bound to the promoters of the terpene synthase genes SlTPS12, SlTPS31, and SlTPS35, inhibiting their transcription. Our findings indicate that SlMYB75 perturbation affects several transcriptional circuits, resulting in altered trichome density and metabolic content.


Asunto(s)
Proteínas de Plantas , Sesquiterpenos/metabolismo , Solanum lycopersicum , Factores de Transcripción , Tricomas/crecimiento & desarrollo , Animales , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Hortic Res ; 10(3): uhac286, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36938568

RESUMEN

The formation and development of pollen are among the most critical processes for reproduction and genetic diversity in the life cycle of flowering plants. The present study found that SlMYB72 was highly expressed in the pollen and tapetum of tomato flowers. Downregulation of SlMYB72 led to a decrease in the amounts of seeds due to abnormal pollen development compared with wild-type plants. Downregulation of SlMYB72 delayed tapetum degradation and inhibited autophagy in tomato anther. Overexpression of SlMYB72 led to abnormal pollen development and delayed tapetum degradation. Expression levels of some autophagy-related genes (ATGs) were decreased in SlMYB72 downregulated plants and increased in overexpression plants. SlMYB72 was directly bound to ACCAAC/ACCAAA motif of the SlATG7 promoter and activated its expression. Downregulation of SlATG7 inhibited the autophagy process and tapetum degradation, resulting in abnormal pollen development in tomatoes. These results indicated SlMYB72 affects the tapetum degradation and pollen development by transcriptional activation of SlATG7 and autophagy in tomato anther. The study expands the understanding of the regulation of autophagy by SlMYB72, uncovers the critical role that autophagy plays in pollen development, and provides potential candidate genes for the production of male-sterility in plants.

5.
Foods ; 11(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35407106

RESUMEN

Chaenomeles speciosa (Sweet) Nakai (C. speciosa) is not only a Chinese herbal medicine but also a functional food widely planted in China. Its fruits are used to treat many diseases or can be processed into food products. This study aims to find key metabolic components, distinguish the differences between geographical regions and find more medicinal and edible values of C. speciosa fruits. We used ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and widely targeted metabolomics analysis to reveal key and differential metabolites. We identified 974 metabolites and screened 548 differential metabolites from 8 regions. We selected significantly high-content differential metabolites to visualize a regional biomarker map. Comparative analysis showed Yunnan had the highest content of total flavonoids, the highest amounts of compounds related to disease resistance and drug targets and the most significant difference from the other regions according to the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database, a unique platform for studying the systematic pharmacology of Chinese herbal medicine and capturing the relationship between drugs, targets and diseases. We used oral bioavailability (OB) ≥ 30% and drug likeness (DL) ≥ 0.18 as the selection criteria and found 101 key active metabolites, which suggests that C. speciosa fruits were rich in healthy metabolites. These results provide valuable information for the development of C. speciosa.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA