Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant J ; 104(5): 1215-1232, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32985030

RESUMEN

Trifoliate orange (Poncirus trifoliata), a deciduous close relative of evergreen Citrus, has important traits for citrus production, including tolerance/resistance to citrus greening disease (Huanglongbing, HLB) and other major diseases, and cold tolerance. It has been one of the most important rootstocks, and one of the most valuable sources of resistance and tolerance genes for citrus. Here we present a high-quality, chromosome-scale genome assembly of P. trifoliata. The 264.9-Mb assembly contains nine chromosomal pseudomolecules with 25 538 protein-coding genes, covering 97.2% of the estimated gene space. Comparative analyses of P. trifoliata and nine Citrus genomes revealed 605 species-specific genes and six rapidly evolving gene families in the P. trifoliata genome. Poncirus trifoliata has evolved specific adaptation in the C-repeat/DREB binding factor (CBF)-dependent and CBF-independent cold signaling pathways to tolerate cold. We identified candidate genes within quantitative trait loci for HLB tolerance, and at the loci for resistance to citrus tristeza virus and citrus nematode. Genetic diversity analysis of Poncirus accessions and Poncirus/Citrus hybrids shows a narrow genetic base in the US germplasm collection, and points to the importance of collecting and preserving more natural genetic variation. Two phenotypically divergent Poncirus accessions are found to be clonally related, supporting a previous conjecture that dwarf Flying Dragon originated as a mutant of a non-dwarfing type. The high-quality genome reveals features and evolutionary insights of Poncirus, and it will serve as a valuable resource for genetic, genomic and molecular research and manipulation in citrus.


Asunto(s)
Citrus/genética , Respuesta al Choque por Frío/genética , Genoma de Planta , Enfermedades de las Plantas/genética , Poncirus/genética , Quimera , Closterovirus/patogenicidad , Resistencia a la Enfermedad/genética , Evolución Molecular , Variación Genética , Anotación de Secuencia Molecular , Familia de Multigenes , Infecciones por Nematodos/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Proteínas/genética , Proteínas/metabolismo , Sitios de Carácter Cuantitativo , Selección Genética , Factores de Transcripción/genética
2.
Proc Natl Acad Sci U S A ; 107(1): 133-8, 2010 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-20018669

RESUMEN

We present a whole-proteome phylogeny of prokaryotes constructed by comparing feature frequency profiles (FFPs) of whole proteomes. Features are l-mers of amino acids, and each organism is represented by a profile of frequencies of all features. The selection of feature length is critical in the FFP method, and we have developed a procedure for identifying the optimal feature lengths for inferring the phylogeny of prokaryotes, strictly speaking, a proteome phylogeny. Our FFP trees are constructed with whole proteomes of 884 prokaryotes, 16 unicellular eukaryotes, and 2 random sequences. To highlight the branching order of major groups, we present a simplified proteome FFP tree of monophyletic class or phylum with branch support. In our whole-proteome FFP trees (i) Archaea, Bacteria, Eukaryota, and a random sequence outgroup are clearly separated; (ii) Archaea and Bacteria form a sister group when rooted with random sequences; (iii) Planctomycetes, which possesses an intracellular membrane compartment, is placed at the basal position of the Bacteria domain; (iv) almost all groups are monophyletic in prokaryotes at most taxonomic levels, but many differences in the branching order of major groups are observed between our proteome FFP tree and trees built with other methods; and (v) previously "unclassified" genomes may be assigned to the most likely taxa. We describe notable similarities and differences between our FFP trees and those based on other methods in grouping and phylogeny of prokaryotes.


Asunto(s)
Filogenia , Células Procariotas , Proteoma/genética , Proteómica/métodos , Análisis de Secuencia de Proteína/métodos , Genoma , Células Procariotas/clasificación , Células Procariotas/fisiología , Alineación de Secuencia/métodos
3.
Proc Natl Acad Sci U S A ; 106(8): 2677-82, 2009 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-19188606

RESUMEN

For comparison of whole-genome (genic + nongenic) sequences, multiple sequence alignment of a few selected genes is not appropriate. One approach is to use an alignment-free method in which feature (or l-mer) frequency profiles (FFP) of whole genomes are used for comparison-a variation of a text or book comparison method, using word frequency profiles. In this approach it is critical to identify the optimal resolution range of l-mers for the given set of genomes compared. The optimum FFP method is applicable for comparing whole genomes or large genomic regions even when there are no common genes with high homology. We outline the method in 3 stages: (i) We first show how the optimal resolution range can be determined with English books which have been transformed into long character strings by removing all punctuation and spaces. (ii) Next, we test the robustness of the optimized FFP method at the nucleotide level, using a mutation model with a wide range of base substitutions and rearrangements. (iii) Finally, to illustrate the utility of the method, phylogenies are reconstructed from concatenated mammalian intronic genomes; the FFP derived intronic genome topologies for each l within the optimal range are all very similar. The topology agrees with the established mammalian phylogeny revealing that intron regions contain a similar level of phylogenic signal as do coding regions.


Asunto(s)
Genoma , Intrones , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA