RESUMEN
Horizontal gene transfer (HGT) is a major driving force in the evolution of prokaryotic and eukaryotic genomes. Despite recent advances in distribution and ecological importance, the extensive pattern, especially in seed plants, and post-transfer adaptation of HGT-acquired genes in land plants remain elusive. We systematically identified 1150 foreign genes in 522 land plant genomes that were likely acquired via at least 322 distinct transfers from nonplant donors and confirmed that recent HGT events were unevenly distributed between seedless and seed plants. HGT-acquired genes evolved to be more similar to native genes in terms of average intron length due to intron gains, and HGT-acquired genes containing introns exhibited higher expression levels than those lacking introns, suggesting that intron gains may be involved in the post-transfer adaptation of HGT in land plants. Functional validation of bacteria-derived gene GuaD in mosses and gymnosperms revealed that the invasion of foreign genes introduced a novel bypass of guanine degradation and resulted in the loss of native pathway genes in some gymnosperms, eventually shaping three major types of guanine metabolism in land plants. We conclude that HGT has played a critical role in land plant evolution.
Asunto(s)
Embryophyta , Transferencia de Gen Horizontal , Genes de Plantas , Guanina , Intrones , Embryophyta/genética , Intrones/genética , Guanina/metabolismo , Filogenia , Adaptación Fisiológica/genética , Genoma de Planta , Evolución MolecularRESUMEN
OBJECTIVE: Although carotid body tumors (CBTs) are rare, they attract particular attention because of their propensity for malignant transformation and the high surgical risk. Because data are scarce and as it is difficult to achieve a large sample size, no study has yet comprehensively analyzed the characteristics, management, or operative complications of CBTs. Therefore, we collected and analyzed all currently available information on CBTs and used the pooled data to derive quantitative information on disease characteristics and management. METHODS: We systematically searched PubMed, Embase, the Cochrane Library, and the Web of Science up to December 1, 2022, for studies that investigated the characteristics and management of CBTs. The primary objective was to identify the prevalence of the various characteristics and the incidence of complications. The secondary objective was to compare patients who underwent preoperative embolization (PE) and those who did not (non-PE), as well as to compare patients with different Shamblin grades and those with and without succinate dehydrogenase (SDH) mutations in terms of CBT characteristics and complications. Two reviewers selected studies for inclusion and independently extracted data. All statistical analyses were performed using the standard statistical procedures of Review Manager 5.2 and Stata 12.0. RESULTS: A total of 155 studies with 9291 patients and 9862 tumors were identified. The pooled results indicated that the median age of patients with CBT was 45.72 years, and 65% were female. The proportion of patients with bilateral lesions was 13%. In addition, 16% of patients had relevant family histories, and the proportion of those with SDH gene mutations was 36%. Sixteen percent of patients experienced multiple paragangliomas, and 12% of CBTs had catecholamine function. The incidence of cranial nerve injury (CNI) was 27%, and 14% of patients suffered from permanent CNI. The incidence rates of operative mortality and stroke were both 1%, and 4% of patients developed transient ischemic attacks. Of all CBTs, 6% were malignant or associated with metastases or recurrences. The most common metastatic locations were the lymph nodes (3%) and bone (3%), followed by the lungs (2%). Compared with non-PE, PE reduced the estimated blood loss (standardized mean difference, -0.95; 95% confidence interval [CI], -1.70 to -0.20) and the operation time (standardized mean difference, -0.56; 95% CI, -1.03 to -0.09), but it increased the incidence of stroke (odds ratio, 2.44; 95% CI, 1.04-5.73). Higher Shamblin grade tumors were associated with more operative complications. Patients who were SDH gene mutation-positive were more likely to have a relevant family history and had more symptoms. CONCLUSIONS: CBT was most common in middle-aged females, and early surgical resection was feasible; there was a low incidence of serious operative complications. Routine PE is not recommended because this may increase the incidence of stroke, although PE somewhat reduced the estimated blood loss and operation time. Higher Shamblin grade tumors increased the incidence of operative complications. Patients who were SDH gene mutation-positive had the most relevant family histories and symptoms.
Asunto(s)
Tumor del Cuerpo Carotídeo , Embolización Terapéutica , Humanos , Tumor del Cuerpo Carotídeo/cirugía , Tumor del Cuerpo Carotídeo/epidemiología , Tumor del Cuerpo Carotídeo/terapia , Tumor del Cuerpo Carotídeo/genética , Prevalencia , Factores de Riesgo , Femenino , Masculino , Embolización Terapéutica/efectos adversos , Resultado del Tratamiento , Persona de Mediana Edad , Adulto , Medición de Riesgo , Anciano , Adulto Joven , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Adolescente , MutaciónRESUMEN
Liver fibrosis is a determinant-stage process of many chronic liver diseases and affected over 7.9 billion populations worldwide with increasing demands of ideal therapeutic agents. Discovery of active molecules with anti-hepatic fibrosis efficacies presents the most attacking filed. Here, we revealed that hepatic L-aspartate levels were decreased in CCl4-induced fibrotic mice. Instead, supplementation of L-aspartate orally alleviated typical manifestations of liver injury and fibrosis. These therapeutic efficacies were alongside improvements of mitochondrial adaptive oxidation. Notably, treatment with L-aspartate rebalanced hepatic cholesterol-steroid metabolism and reduced the levels of liver-impairing metabolites, including corticosterone (CORT). Mechanistically, L-aspartate treatment efficiently reversed CORT-mediated glucocorticoid receptor ß (GRß) signaling activation and subsequent transcriptional suppression of the mitochondrial genome by directly binding to the mitochondrial genome. Knockout of GRß ameliorated corticosterone-mediated mitochondrial dysfunction and hepatocyte damage which also weakened the improvements of L-aspartate in suppressing GRß signaling. These data suggest that L-aspartate ameliorates hepatic fibrosis by suppressing GRß signaling via rebalancing cholesterol-steroid metabolism, would be an ideal candidate for clinical liver fibrosis treatment.
Asunto(s)
Ácido Aspártico , Tetracloruro de Carbono , Cirrosis Hepática , Hígado , Ratones Endogámicos C57BL , Receptores de Glucocorticoides , Animales , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Masculino , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ácido Aspártico/metabolismo , Ratones , Corticosterona , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Colesterol/metabolismo , Transducción de Señal/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/patología , Ratones NoqueadosRESUMEN
Achieving circularly polarized organic ultralong room-temperature phosphorescence (CP-OURTP) with a high luminescent dissymmetry factor (glum ) is crucial for diverse optoelectronic applications. In particular, dynamically controlling the dissymmetry factor of CP-OURTP can profoundly advance these applications, but it is still unprecedented. This study introduces an effective strategy to achieve photoirradiation-driven chirality regulation in a bilayered structure film, which consists of a layer of soft helical superstructure incorporated with a light-driven molecular motor and a layer of room-temperature phosphorescent (RTP) polymer. The prepared bilayered film exhibits CP-OURTP with an emission lifetime of 805â ms and a glum value up to 1.38. Remarkably, the glum value of the resulting CP-OURTP film can be reversibly controlled between 0.6 and 1.38 over 20â cycles by light irradiation, representing the first example of dynamically controlling the glum in CP-OURTP.
RESUMEN
Wound healing is a complex and error-prone process. Wound healing in adults often leads to the formation of scars, a type of fibrotic tissue that lacks skin appendages. Hypertrophic scars and keloids can also form when the wound-healing process goes wrong. Leptin (Lep) and leptin receptors (LepRs) have recently been shown to affect multiple stages of wound healing. This effect, however, is paradoxical for scarless wound healing. On the one hand, Lep exerts pro-inflammatory and profibrotic effects; on the other hand, Lep can regulate hair follicle growth. This paper summarises the role of Lep and LepRs on cells in different stages of wound healing, briefly introduces the process of wound healing and Lep and LepRs, and examines the possibility of promoting scarless wound healing through spatiotemporal, systemic, and local regulation of Lep levels and the binding of Lep and LepRs.
Asunto(s)
Cicatriz Hipertrófica , Leptina , Humanos , Cicatriz Hipertrófica/patología , Leptina/metabolismo , Receptores de Leptina/metabolismo , Piel/metabolismo , Cicatrización de Heridas , AnimalesRESUMEN
Disturbances or defects in the process of wound repair can disrupt the delicate balance of cells and molecules necessary for complete wound healing, thus leading to chronic wounds or fibrotic scars. Myofibroblasts are one of the most important cells involved in fibrotic scars, and reprogramming provides a potential avenue to increase myofibroblast clearance. Although myofibroblasts have long been recognized as terminally differentiated cells, recent studies have shown that myofibroblasts have the capacity to be reprogrammed into adipocytes. This review intends to summarize the potential of reprogramming myofibroblasts into adipocytes. We will discuss myofibroblast lineage tracing, as well as the known mechanisms underlying adipocyte regeneration from myofibroblasts. In addition, we investigated different changes in myofibroblast gene expression, transcriptional regulators, signalling pathways and epigenetic regulators during skin wound healing. In the future, myofibroblast reprogramming in wound healing will be better understood and appreciated, which may provide new ideas for the treatment of scarless wound healing.
Asunto(s)
Cicatriz , Miofibroblastos , Adipocitos/patología , Diferenciación Celular , Cicatriz/patología , Fibrosis , Humanos , Miofibroblastos/patología , Cicatrización de HeridasRESUMEN
The loss of dermal white adipose tissue (dWAT) is vital to the formation of dermal fibrosis (DF), but the specific mechanism is not well understood. A few studies are reviewed to explore the role of dWAT in the formation of DF. Recent findings indicated that the adipocytes-to-myofibroblasts transition in dWAT reflects the direct contribution to the DF formation. While adipose-derived stem cells (ADSCs) contained in dWAT express antifibrotic cytokines, the loss of ADSCs leads to skin protection decreased, which indirectly exacerbates DF and tissue damage. Therefore, blocking or reversing the adipocytes-to-myofibroblasts transition or improving the survival of ADSCs in dWAT and the expression of antifibrotic cytokines may be an effective strategy for the treatment of DF.
Asunto(s)
Adipocitos , Tejido Adiposo Blanco , Adipocitos/metabolismo , Tejido Adiposo , Tejido Adiposo Blanco/metabolismo , Citocinas/metabolismo , Fibrosis , Humanos , Miofibroblastos/metabolismoRESUMEN
Mechanical loading exerts a profound influence on bone density and architecture, but the exact mechanism is unknown. Our study shows that expression of the neurological transcriptional factor zinc finger of the cerebellum 1 (ZIC1) is markedly increased in trabecular bone biopsies in the lumbar spine compared with the iliac crest, skeletal sites of high and low mechanical stress, respectively. Human trabecular bone transcriptome analyses revealed a strong association between ZIC1 mRNA levels and gene transcripts characteristically associated with osteoblasts, osteocytes and osteoclasts. This supposition is supported by higher ZIC1 expression in iliac bone biopsies from postmenopausal women with osteoporosis compared with age-matched control subjects, as well as strongly significant inverse correlation between ZIC1 mRNA levels and BMI-adjusted bone mineral density (BMD) (Z-score). ZIC1 promoter methylation was decreased in mechanically loaded vertebral bone compared to unloaded normal iliac bone, and its mRNA levels correlated inversely with ZIC1 promoter methylation, thus linking mechanical stress to epigenetic control of gene expression. The findings were corroborated in cultures of rat osteoblast progenitors and osteoblast-like cells. This study demonstrates for the first time how skeletal epigenetic changes that are affected by mechanical forces give rise to marked alteration in bone cell transcriptional activity and translate to human bone pathophysiology.
Asunto(s)
Osteoporosis Posmenopáusica , Animales , Densidad Ósea/genética , Epigénesis Genética , Femenino , Humanos , Ilion/metabolismo , Vértebras Lumbares/metabolismo , Osteoporosis Posmenopáusica/genética , Osteoporosis Posmenopáusica/patología , ARN Mensajero/genética , Ratas , Estrés Mecánico , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Resveratrol (RSV) is a natural extract that has been extensively studied for its significant anti-inflammatory and antioxidant effects, which are closely associated with a variety of injurious diseases and even cosmetic medicine. In this review, we have researched and summarized the role of resveratrol and its different forms of action in wound healing, exploring its role and mechanisms in promoting wound healing through different modes of action such as hydrogels, fibrous scaffolds and parallel ratio medical devices with their anti-inflammatory, antioxidant, antibacterial and anti-ageing properties and functions in various cells that may play a role in wound healing. This will provide a direction for further understanding of the mechanism of action of resveratrol in wound healing for future research.
Asunto(s)
Antioxidantes , Cicatrización de Heridas , Antibacterianos/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Hidrogeles/farmacología , Resveratrol/farmacologíaRESUMEN
Organic molecules which can undergo excited-state intramolecular proton transfer (ESIPT) process have been considered as ideal gain materials for near-infrared organic lasers owing to their effective four-level systems. However, extending lasing wavelength beyond 800â nm with present ESIPT-active gain materials is still in challenge. Herein, we established a molecular design strategy that operates via extending the π-conjugated system of the ESIPT parent core to enhance the cascaded double ESIPT process and thus to achieve the red-shifted six-level system lasing. Concretely, a model molecule with 1,9-dihydroxyanthracene as the ESIPT parent core was designed and synthesized, which was proved to undergo twice cascaded ESIPT processes while the 1,8-dihydroxynaphthalene-based analogue can only undergo once ESIPT process based on DFT calculations and ultrafast dynamics analyses. Finally, a six-level system lasing toward 900â nm was achieved with a low threshold of 27.4â µJ cm-2 .
RESUMEN
The incidence of acute and chronic wound diseases is rising due to various reasons. With complicated pathogenesis, long course, difficult treatment and high disability, wound diseases have become a major burden for patients, their families, and society. Therefore, the focus of research is to identify new ideas and methods for treatment. Fat grafting has gained increased attention because of its effectiveness in wound treatment, and further analysis has uncovered that the stem cells derived from fat may be the main factor affecting wound healing. We summarize the function of adipose stem cells and analyze their possible mechanisms in tissue repair, helping to provide new ideas for the treatment of wound healing.
Asunto(s)
Tejido Adiposo/trasplante , Medicina Regenerativa , Trasplante de Células Madre , Células Madre/metabolismo , Cicatrización de Heridas , Heridas y Lesiones/cirugía , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Animales , Diferenciación Celular , Humanos , Comunicación Paracrina , Fenotipo , Resultado del Tratamiento , Heridas y Lesiones/metabolismo , Heridas y Lesiones/patologíaRESUMEN
Near-infrared (NIR) organic solid-state lasers play an essential role in applications ranging from laser communication to infrared night vision, but progress in this area is restricted by the lack of effective excited-state gain processes. Herein, we originally proposed and demonstrated the cascaded occurrence of excited-state intramolecular proton transfer for constructing the completely new energy-level systems. Cascading by the first ultrafast proton transfer of <430â fs and the subsequent irreversible second proton transfer of ca. 1.6â ps, the stepwise proton transfer process favors the true six-level photophysical cycle, which supports efficient population inversion and thus NIR single-mode lasing at 854â nm. This work realizes longest wavelength beyond 850â nm of organic single-crystal lasing to date and originally exploits the cascaded excited-state molecular proton transfer energy-level systems for organic solid-state lasers.
RESUMEN
We investigated the material properties of Cremonese soundboards using a wide range of spectroscopic, microscopic, and chemical techniques. We found similar types of spruce in Cremonese soundboards as in modern instruments, but Cremonese spruces exhibit unnatural elemental compositions and oxidation patterns that suggest artificial manipulation. Combining analytical data and historical information, we may deduce the minerals being added and their potential functions-borax and metal sulfates for fungal suppression, table salt for moisture control, alum for molecular crosslinking, and potash or quicklime for alkaline treatment. The overall purpose may have been wood preservation or acoustic tuning. Hemicellulose fragmentation and altered cellulose nanostructures are observed in heavily treated Stradivari specimens, which show diminished second-harmonic generation signals. Guarneri's practice of crosslinking wood fibers via aluminum coordination may also affect mechanical and acoustic properties. Our data suggest that old masters undertook materials engineering experiments to produce soundboards with unique properties.
RESUMEN
N6-methyladenosine (m6 A) is one of the most abundant messenger RNA (mRNA) modifications in eukaryotes and is involved in various key processes of RNA metabolism. In this issue of Nature, Ries et al (2019) described the fundamental features of m6A modification of mRNAs in regulating the composition of the phase-separated transcriptome on the basis of number and distribution, and provide strong evidence that m6A plays a role in regulating phase separation in cells.
Asunto(s)
Adenosina/análogos & derivados , Proteínas de Unión al ARN/metabolismo , Adenosina/metabolismo , Animales , Gránulos Citoplasmáticos/metabolismo , Ratones , Modelos Biológicos , Células Madre Embrionarias de Ratones/metabolismoRESUMEN
The lily-of-the-valley Convallaria (Asparagaceae) consists of three herbaceous perennial species. The plants are commonly found in northern hemisphere, and are best-known for their ornamental and pharmaceutical value. In order to assess the genetic structure, diversity and demographic history of Convallaria species, 19 novel microsatellite markers were developed based on transcriptome data of C. keiskei. Polymorphism and cross-amplification of the markers were tested in three populations of C. keiskei and one population each of C. majalis and C. montana. The transferability rate in two species was both 89.5%. The average number of alleles detected per locus was 7.7, 3.3 and 2.7 in C. keiskei, C. majalis and C. montana, respectively, and the polymorphism information content correspondingly varied from 0.067 to 0.730, from 0.071 to 0.637 and from 0.195 to 0.680 at the population level. The observed and expected heterozygosity ranged from 0.000 to 1.000 and from 0.000 to 0.833, respectively. Seven of the 19 loci showed significant deviation from Hardy-Weinberg equilibrium. The availability of these markers will provide a useful molecular tool for further population genetics, phylogeographic and breeding studies of Convallaria species.
Asunto(s)
Convallaria/genética , Repeticiones de Microsatélite/genética , Alelos , Asparagaceae/genética , Sitios Genéticos/genética , Variación Genética/genética , Genética de Población/métodos , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Polimorfismo Genético/genética , Transcriptoma/genética , Secuenciación del Exoma/métodosRESUMEN
The polyetherimide diaphragm, sodium copper chlorophyllin (SCC), and copper ion coating composite used on earphones were observed to improve the high-frequency (10k-14k Hz) performance. This reinforcement phenomenon was expected to make the sound experience brighter and more diverse. By SEM observation, the mixed coating of SCC/Cu2+ on the polyethylenimine (PEI) diaphragm exhibited a planar blocky structure and was tightly bonded to the surface of the PEI polymer without the aid of colloids. The endothermic process of SCC and metal ion complexation was analyzed by isothermal titration calorimetry. The association ratios of SCC/Cu2+ and SCC/Ni2+ were 4/1 and 6/1, respectively, and the SCC/Cu2+ association yielded a stronger binding constant and more free energy. It was expected that the SCC/Cu2+(4/1) mixed liquid would be immobilized on the PEI polymer by multivalent interaction, including hydrogen-bonding networks between carboxyl groups of SCC and amine groups of PEI, and cross-linking of bridging copper ions. We used dimethylethylenediamine (DME) monomer instead of PEI polymer to analyze this multivalent interaction and observed a two-stage exothermic association of SCC/Cu2+(4/1) and DME with a total Gibbs free energy of 15.15 kcal/mol. We observed that the binding energy could be used to explain that the SCC/Cu2+ mixed formulation could be fixed on the surface of the PEI polymer and could enhance the strength of the PEI film. Compared with graphene films, which can continuously improve the performance of high and ultrasonic frequencies, this study was devoted to and was initiated for the purpose of applying porphyrin compounds to improve music performance.
Asunto(s)
Audiometría/instrumentación , Clorofilidas/química , Cobre/química , Polietileneimina/química , Diseño de Equipo , Audífonos , Nanotecnología/métodosAsunto(s)
Vesículas Extracelulares , Cicatrización de Heridas , Ratas , Animales , Piel/irrigación sanguíneaAsunto(s)
Abdominoplastia , Hipertensión , Mamoplastia , Humanos , Losartán , Cicatriz/tratamiento farmacológico , Cicatriz/etiología , Cicatriz/prevención & control , Cicatrización de Heridas , Abdominoplastia/efectos adversos , Mamoplastia/efectos adversos , Método Doble Ciego , Resultado del TratamientoRESUMEN
Platinum-based chemotherapy is an important treatment for non-small cell lung cancer. However, the effectiveness of the treatment varies among the patients. We investigated the association between DNA polymorphisms of the autophagy pathway and responses of such treatment among 1004 Chinese patients. Ninety-nine SNPs located on 13 genes of the autophagy pathway were genotyped and assessed for their association with clinical benefit, progression-free survival (PFS) and overall survival (OS). The results showed that rs7953348 (G>A) (P=0.017, OR: 0.67, 95%CI: 0.49-0.93) and rs12303764 (A>C) (P=0.009, OR: 0.63, 95%CI: 0.45-0.89) at the ULK1 gene, and rs17742719 (C>A) (P=0.002, OR: 1.83, 95%CI: 1.26-2.66), rs8003279 (A>G) (P=0.006, OR: 1.65, 95%CI: 1.16~2.35) and rs1009647 (G>A) (P=0.002, OR: 1.70, 95%CI: 1.22-2.37) at the ATG14 gene were associated with clinical benefit. Polymorphisms at rs7955890 (G>A) (P=0.004, HR: 0.63; 95%CI: 0.46-0.86) and rs17032060 (G>A) (P=0.006, HR: 0.65, 95%CI: 0.48-0.88) at the DRAM gene, and rs13082005 (G>A) (P=0.012, HR: 1.27, 95%CI: 1.05-1.53) at the ATG3 gene were significantly associated with PFS. We also found that rs7953348 (G>A) (P=0.011, HR: 0.74, 95%CI: 0.58-0.93) at the ULK1 gene and rs1864183 (G>A) (P=0.016, HR: 0.42, 95%CI: 0.21-0.85) at the ATG10 gene were associated with OS. Thus, the study demonstrated that the autophagy pathway might play important role(s) in platinum-based chemotherapy. DNA polymorphisms in its component genes can potentially be predictors for clinical responses of platinum-based chemotherapy among the patients with non-small lung cancer.