RESUMEN
Stem cells determine homeostasis and repair of many tissues and are increasingly recognized as functionally heterogeneous. To define the extent of-and molecular basis for-heterogeneity, we overlaid functional, transcriptional, and epigenetic attributes of hematopoietic stem cells (HSCs) at a clonal level using endogenous fluorescent tagging. Endogenous HSC had clone-specific functional attributes over time in vivo. The intra-clonal behaviors were highly stereotypic, conserved under the stress of transplantation, inflammation, and genotoxic injury, and associated with distinctive transcriptional, DNA methylation, and chromatin accessibility patterns. Further, HSC function corresponded to epigenetic configuration but not always to transcriptional state. Therefore, hematopoiesis under homeostatic and stress conditions represents the integrated action of highly heterogeneous clones of HSC with epigenetically scripted behaviors. This high degree of epigenetically driven cell autonomy among HSCs implies that refinement of the concepts of stem cell plasticity and of the stem cell niche is warranted.
Asunto(s)
Epigenómica , Células Madre Hematopoyéticas/citología , Animales , Linaje de la Célula , Células Clonales/citología , Fluorescencia , Hematopoyesis , Inflamación/patología , Ratones , Transcripción GenéticaRESUMEN
Characterization of how the microenvironment, or niche, regulates stem cell activity is central to understanding stem cell biology and to developing strategies for the therapeutic manipulation of stem cells. Low oxygen tension (hypoxia) is commonly thought to be a shared niche characteristic in maintaining quiescence in multiple stem cell types. However, support for the existence of a hypoxic niche has largely come from indirect evidence such as proteomic analysis, expression of hypoxia inducible factor-1α (Hif-1α) and related genes, and staining with surrogate hypoxic markers (for example, pimonidazole). Here we perform direct in vivo measurements of local oxygen tension (pO2) in the bone marrow of live mice. Using two-photon phosphorescence lifetime microscopy, we determined the absolute pO2 of the bone marrow to be quite low (<32 mm Hg) despite very high vascular density. We further uncovered heterogeneities in local pO2, with the lowest pO2 (â¼9.9 mm Hg, or 1.3%) found in deeper peri-sinusoidal regions. The endosteal region, by contrast, is less hypoxic as it is perfused with small arteries that are often positive for the marker nestin. These pO2 values change markedly after radiation and chemotherapy, pointing to the role of stress in altering the stem cell metabolic microenvironment.
Asunto(s)
Médula Ósea/metabolismo , Oxígeno/análisis , Animales , Arterias/metabolismo , Médula Ósea/irrigación sanguínea , Médula Ósea/efectos de los fármacos , Médula Ósea/efectos de la radiación , Busulfano/farmacología , Hipoxia de la Célula , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Hipoxia/diagnóstico , Hipoxia/metabolismo , Mediciones Luminiscentes , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía , Nestina/metabolismo , Oxígeno/metabolismo , Fotones , Nicho de Células Madre/efectos de los fármacos , Nicho de Células Madre/efectos de la radiaciónRESUMEN
Stem cells reside in a specialized regulatory microenvironment or niche, where they receive appropriate support for maintaining self-renewal and multi-lineage differentiation capacity. The niche may also protect stem cells from environmental insults including cytotoxic chemotherapy and perhaps pathogenic immunity. The testis, hair follicle and placenta are all sites of residence for stem cells and are immune-suppressive environments, called immune-privileged sites, where multiple mechanisms cooperate to prevent immune attack, even enabling prolonged survival of foreign allografts without immunosuppression. We sought to determine if somatic stem-cell niches more broadly are immune-privileged sites by examining the haematopoietic stem/progenitor cell (HSPC) niche in the bone marrow, a site where immune reactivity exists. We observed persistence of HSPCs from allogeneic donor mice (allo-HSPCs) in non-irradiated recipient mice for 30 days without immunosuppression with the same survival frequency compared to syngeneic HSPCs. These HSPCs were lost after the depletion of FoxP3 regulatory T (T(reg)) cells. High-resolution in vivo imaging over time demonstrated marked co-localization of HSPCs with T(reg) cells that accumulated on the endosteal surface in the calvarial and trabecular bone marrow. T(reg) cells seem to participate in creating a localized zone where HSPCs reside and where T(reg) cells are necessary for allo-HSPC persistence. In addition to processes supporting stem-cell function, the niche will provide a relative sanctuary from immune attack.
Asunto(s)
Supervivencia de Injerto/inmunología , Células Madre Hematopoyéticas/inmunología , Imagenología Tridimensional , Nicho de Células Madre/inmunología , Linfocitos T Reguladores/inmunología , Animales , Supervivencia Celular/inmunología , Células Cultivadas , Factores de Transcripción Forkhead/metabolismo , Células Madre Hematopoyéticas/citología , Humanos , Interleucina-10/deficiencia , Interleucina-10/genética , Interleucina-10/inmunología , Interleucina-10/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Nicho de Células Madre/citología , Linfocitos T Reguladores/metabolismo , Factores de Tiempo , Trasplante Homólogo/inmunologíaRESUMEN
Second-harmonic generation (SHG) originates from the interaction between upconverted fields from individual scatterers. This renders SHG microscopy highly sensitive to molecular distribution. Here, we aim to take advantage of the difference in SHG between aligned and partially aligned molecules to probe the degree of molecular order during biomechanical testing, independently of the absolute orientation of the scattering molecules. Toward this goal, we implemented a circular polarization SHG imaging approach and used it to quantify the intensity change associated with collagen fibers straightening in the arterial wall during mechanical stretching. We were able to observe the delayed alignment of collagen fibers during mechanical loading, thus demonstrating a simple method to characterize molecular distribution using intensity information alone.
Asunto(s)
Colágenos Fibrilares/ultraestructura , Animales , Arterias/ultraestructura , Colágenos Fibrilares/metabolismo , Humanos , Estrés MecánicoRESUMEN
Stem cells reside in a specialized, regulatory environment termed the niche that dictates how they generate, maintain and repair tissues. We have previously documented that transplanted haematopoietic stem and progenitor cell populations localize to subdomains of bone-marrow microvessels where the chemokine CXCL12 is particularly abundant. Using a combination of high-resolution confocal microscopy and two-photon video imaging of individual haematopoietic cells in the calvarium bone marrow of living mice over time, we examine the relationship of haematopoietic stem and progenitor cells to blood vessels, osteoblasts and endosteal surface as they home and engraft in irradiated and c-Kit-receptor-deficient recipient mice. Osteoblasts were enmeshed in microvessels and relative positioning of stem/progenitor cells within this complex tissue was nonrandom and dynamic. Both cell autonomous and non-autonomous factors influenced primitive cell localization. Different haematopoietic cell subsets localized to distinct locations according to the stage of differentiation. When physiological challenges drove either engraftment or expansion, bone-marrow stem/progenitor cells assumed positions in close proximity to bone and osteoblasts. Our analysis permits observing in real time, at a single cell level, processes that previously have been studied only by their long-term outcome at the organismal level.
Asunto(s)
Células Madre Hematopoyéticas/citología , Nicho de Células Madre/citología , Animales , Vasos Sanguíneos/citología , Médula Ósea , División Celular , Separación Celular , Ratones , Ratones Endogámicos C57BL , Osteoblastos/citología , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo , Cráneo/citologíaRESUMEN
Desmoplasia is characteristic of pancreatic ductal adenocarcinoma (PDAC), which exhibits 5-year survival rates of 3%. Desmoplasia presents physical and biochemical barriers that contribute to treatment resistance, yet depleting the stroma alone is unsuccessful and even detrimental to patient outcomes. This study is the first demonstration of targeted photoactivable multi-inhibitor liposomes (TPMILs) that induce both photodynamic and chemotherapeutic tumor insult, while simultaneously remediating desmoplasia in orthotopic PDAC. TPMILs targeted with cetuximab (anti-EGFR mAb) contain lipidated benzoporphyrin derivative (BPD-PC) photosensitizer and irinotecan. The desmoplastic tumors comprise human PDAC cells and patient-derived cancer-associated fibroblasts. Upon photoactivation, the TPMILs induce 90% tumor growth inhibition at only 8.1% of the patient equivalent dose of nanoliposomal irinotecan (nal-IRI). Without EGFR targeting, PMIL photoactivation is ineffective. TPMIL photoactivation is also sixfold more effective at inhibiting tumor growth than a cocktail of Visudyne-photodynamic therapy (PDT) and nal-IRI, and also doubles survival and extends progression-free survival by greater than fivefold. Second harmonic generation imaging reveals that TPMIL photoactivation reduces collagen density by >90% and increases collagen nonalignment by >103 -fold. Collagen nonalignment correlates with a reduction in tumor burden and survival. This single-construct phototoxic, chemotherapeutic, and desmoplasia-remediating regimen offers unprecedented opportunities to substantially extend survival in patients with otherwise dismal prognoses.
Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/tratamiento farmacológico , Receptores ErbB/uso terapéutico , Humanos , Irinotecán/farmacología , Irinotecán/uso terapéutico , Liposomas/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Neoplasias PancreáticasRESUMEN
Interactions between the immune and central nervous systems strongly influence brain health. Although the blood-brain barrier restricts this crosstalk, we now know that meningeal gateways through brain border tissues facilitate intersystem communication. Cerebrospinal fluid (CSF), which interfaces with the glymphatic system and thereby drains the brain's interstitial and perivascular spaces, facilitates outward signaling beyond the blood-brain barrier. In the present study, we report that CSF can exit into the skull bone marrow. Fluorescent tracers injected into the cisterna magna of mice migrate along perivascular spaces of dural blood vessels and then travel through hundreds of sub-millimeter skull channels into the calvarial marrow. During meningitis, bacteria hijack this route to invade the skull's hematopoietic niches and initiate cranial hematopoiesis ahead of remote tibial sites. As skull channels also directly provide leukocytes to meninges, the privileged sampling of brain-derived danger signals in CSF by regional marrow may have broad implications for inflammatory neurological disorders.
Asunto(s)
Sistema Glinfático , Meningitis Bacterianas , Animales , Médula Ósea , Encéfalo/irrigación sanguínea , Líquido Cefalorraquídeo , Sistema Glinfático/fisiología , Hematopoyesis , Ratones , CráneoRESUMEN
The organization of cellular niches is known to have a key role in regulating normal stem cell differentiation and regeneration, but relatively little is known about the architecture of microenvironments that support malignant metastasis. Using dynamic in vivo confocal imaging, here we show that murine bone marrow contains unique anatomic regions defined by specialized endothelium. This vasculature expresses the adhesion molecule E-selectin and the chemoattractant stromal-cell-derived factor 1 (SDF-1) in discrete, discontinuous areas that influence the homing of a variety of tumour cell lines. Disruption of the interactions between SDF-1 and its receptor CXCR4 inhibits the homing of Nalm-6 cells (an acute lymphoblastic leukaemia cell line) to these vessels. Further studies revealed that circulating leukaemic cells can engraft around these vessels, suggesting that this molecularly distinct vasculature demarcates a microenvironment for early metastatic tumour spread in bone marrow. Finally, purified haematopoietic stem/progenitor cells and lymphocytes also localize to the same microdomains, indicating that this vasculature might also function in benign states to demarcate specific portals for the entry of cells into the marrow space. Specialized vascular structures therefore appear to delineate a microenvironment with unique physiology that can be exploited by circulating malignant cells.
Asunto(s)
Células de la Médula Ósea/citología , Células Endoteliales/citología , Células Endoteliales/metabolismo , Microscopía Confocal/métodos , Neoplasias/patología , Animales , Células de la Médula Ósea/metabolismo , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Citocinas/metabolismo , Selectina E/metabolismo , Leucemia/metabolismo , Leucemia/patología , Ratones , Ratones Endogámicos BALB C , Ratones SCID , Receptores CXCR4/metabolismo , Cráneo/citologíaRESUMEN
Advances in intravital microscopy (IVM) have enabled the studies of cellular organization and dynamics in the native microenvironment of intact organisms with minimal perturbation. The abilities to track specific cell populations and monitor their interactions have opened up new horizons for visualizing cell biology in vivo, yet the success of standard fluorescence cell labeling approaches for IVM comes with a "dark side" in that unlabeled cells are invisible, leaving labeled cells or structures to appear isolated in space, devoid of their surroundings and lacking proper biological context. Here we describe a novel method for "filling in the void" by harnessing the ubiquity of extracellular (interstitial) fluid and its ease of fluorescence labelling by commonly used vascular and lymphatic tracers. We show that during routine labeling of the vasculature and lymphatics for IVM, commonly used fluorescent tracers readily perfuse the interstitial spaces of the bone marrow (BM) and the lymph node (LN), outlining the unlabeled cells and forming negative contrast images that complement standard (positive) cell labeling approaches. The method is simple yet powerful, offering a comprehensive view of the cellular landscape such as cell density and spatial distribution, as well as dynamic processes such as cell motility and transmigration across the vascular endothelium. The extracellular localization of the dye and the interstitial flow provide favorable conditions for prolonged Intravital time lapse imaging with minimal toxicity and photobleaching.
Asunto(s)
Medios de Contraste/química , Microscopía Intravital , Animales , Automatización , Médula Ósea/diagnóstico por imagen , Femenino , Colorantes Fluorescentes/química , Ganglios Linfáticos/diagnóstico por imagen , Masculino , Ratones Endogámicos C57BL , Microscopía Fluorescente , Flujo Sanguíneo Regional , Factores de TiempoRESUMEN
The bone marrow is a unique microenvironment where blood cells are produced and released into the circulation. At the top of the blood cell lineage are the hematopoietic stem cells (HSC), which are thought to reside in close association with the bone marrow vascular endothelial cells (Morrison and Scadden, Nature 505:327-334, 2014). Recent efforts at characterizing the HSC niche have prompted us to make close examinations of two distinct types of blood vessel in the bone marrow, the arteriolar vessels originating from arteries and sinusoidal vessels connected to veins. We found the two vessel types to exhibit different vascular permeabilites, hemodynamics, cell trafficking behaviors, and oxygen content (Itkin et al., Nature 532:323-328, 2016; Spencer et al., Nature 508:269-273, 2014). Here, we describe a method to quantitatively measure the permeability and hemodynamics of arterioles and sinusoids in murine calvarial bone marrow using intravital microscopy.
Asunto(s)
Arteriolas/citología , Médula Ósea/crecimiento & desarrollo , Capilares/citología , Permeabilidad Capilar , Células Madre Hematopoyéticas/citología , Hemodinámica , Microscopía Intravital/métodos , Animales , Arteriolas/metabolismo , Médula Ósea/metabolismo , Capilares/metabolismo , Movimiento Celular , Células Madre Hematopoyéticas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones TransgénicosRESUMEN
Photoconversion, an irreversible shift in a fluorophore emission spectrum after light exposure, is a powerful tool for marking cellular and subcellular compartments and tracking their dynamics in vivo. This paper reports on the photoconversion properties of Di-8-ANEPPS, a commercially available membrane dye. When illuminated with near-infrared femtosecond laser pulses, Di-8-ANEPPS undergoes multiphoton photoconversion as indicated by the supralinear dependence of the conversion rate ρpc on the incident power (ρpcâIexc2.27), and by the ability to photoconvert a thin optical section in a three-dimensional matrix. The characteristic emission spectrum changed from red to blue, and ratiometric analysis on single cells in vitro revealed a 65-fold increase in the blue to red wavelength ratio after photoconversion. The spectral shift is preserved in vivo for hours, making Di-8-ANEPPS a useful dye for intravital cell marking and tracking applications.
Asunto(s)
Membrana Celular , Colorantes Fluorescentes/química , Microscopía Intravital , Rayos Láser , Animales , Ratones Endogámicos C57BL , Compuestos de Piridinio/químicaRESUMEN
Transplantation of a single hematopoietic stem cell is an important method for its functional characterization, but the standard transplantation protocol relies on cell homing to the bone marrow after intravenous injection. Here, we present a method to transplant single cells directly into the bone marrow of live mice. We developed an optical platform that integrates a multiphoton microscope with a laser ablation unit for microsurgery and an optical tweezer for cell micromanipulation. These tools allow image-guided single cell transplantation with high spatial control. The platform was used to deliver single hematopoietic stem cells. The engraftment of transplants was tracked over time, illustrating that the technique can be useful for studying both normal and malignant stem cells in vivo.
Asunto(s)
Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Trasplante de Médula Ósea , Imagen Molecular , Análisis de la Célula Individual , Animales , Ratones , Ratones Transgénicos , Análisis de la Célula Individual/métodosRESUMEN
Clonal heterogeneity and selection underpin many biological processes including development and tumor progression. Combinatorial fluorescent protein expression in germline cells has proven its utility for tracking the formation and regeneration of different organ systems. Such cell populations encoded by combinatorial fluorescent proteins are also attractive tools for understanding clonal expansion and clonal competition in cancer. However, the assignment of clonal identity requires an analytical framework in which clonal markings can be parameterized and validated. Here we present a systematic and quantitative method for RGB analysis of fluorescent melanoma cancer clones. We then demonstrate refined clonal trackability of melanoma cells using this scheme.
Asunto(s)
Células Clonales/metabolismo , Color , Proteínas Luminiscentes/química , FluorescenciaRESUMEN
Over the past 50 years, much insight has been gained into the biology of hematopoietic stem cells (HSCs). Much of this information has been gained though isolation of specific bone marrow populations, and transplantation into irradiated recipients followed by characterization of chimeras months later. These studies have yielded insights into the function of HSCs, but have shed little light on the interactions of individual stem cells with their environment. Characterization of the behavior of single HSCs awaited the use of relatively noninvasive intravital microscopy, which allows one to identify rare cells in real time and follow them in multiple imaging sessions. Here we describe techniques used to image transplanted HSCs in the mouse calvarium using hybrid confocal/multi-photon microscopy and second harmonic imaging. For detection, fluorescently tagged HSCs are transplanted into a recipient mouse. The architecture of the bone marrow can be delineated using a combination of fluorescent probes and vascular dyes, second harmonic generation to detect the collagen signal from bone, and transgenic recipient mice containing specific fluorescent support cell populations.
Asunto(s)
Células Madre Hematopoyéticas/citología , Imagen Molecular/métodos , Cráneo/citología , Animales , Células de la Médula Ósea/citología , Trasplante de Médula Ósea , Imagenología Tridimensional , Ratones , Microscopía FluorescenteRESUMEN
We describe a novel photoconversion technique to track individual cells in vivo using a commercial lipophilic membrane dye, DiR. We show that DiR exhibits a permanent fluorescence emission shift (photoconversion) after light exposure and does not reacquire the original color over time. Ratiometric imaging can be used to distinguish photoconverted from non-converted cells with high sensitivity. Combining the use of this photoconvertible dye with intravital microscopy, we tracked the division of individual hematopoietic stem/progenitor cells within the calvarium bone marrow of live mice. We also studied the peripheral differentiation of individual T cells by tracking the gain or loss of FoxP3-GFP expression, a marker of the immune suppressive function of CD4(+) T cells. With the near-infrared photoconvertible membrane dye, the entire visible spectral range is available for simultaneous use with other fluorescent proteins to monitor gene expression or to trace cell lineage commitment in vivo with high spatial and temporal resolution.
Asunto(s)
Membrana Celular/metabolismo , Colorantes/química , Fotoquímica , Análisis de la Célula Individual/métodos , Animales , Médula Ósea/metabolismo , Linfocitos T CD4-Positivos/citología , Diferenciación Celular , Linaje de la Célula , Factores de Transcripción Forkhead/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células Madre Hematopoyéticas/citología , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Espectrometría de Fluorescencia , Coloración y Etiquetado/métodos , Células Madre/citología , Linfocitos T/citología , Factores de TiempoRESUMEN
We demonstrate a fiber-based, three-color femtosecond source for simultaneous imaging of three fluorescent proteins (FPs) using two-photon fluorescence microscopy (2PM). The three excitation wavelengths at 775 nm, 864 nm and 950 nm, are obtained through second harmonic generation (SHG) of the 1550-nm pump laser and the 1728-nm and 1900-nm solitons generated through soliton self-frequency shift (SSFS) in a large-mode-area (LMA) fiber. These energetic pulses are well matched to the two-photon excitation peaks of red, cyan and yellow fluorescent proteins (TagRFPs, TagCFPs, and TagYFPs) for efficient excitation. We demonstrate simultaneous 2PM of human melanoma cells expressing a "rainbow" combination of these three fluorescent proteins.
RESUMEN
Multiple myeloma (MM), the second most common hematological malignancy, initiates from a single site and spreads via circulation to multiple sites in the bone marrow (BM). Methods to track MM cells both in the BM and circulation would be useful for developing new therapeutic strategies to target MM cell spread. We describe the use of complementary optical techniques to track human MM cells expressing both bioluminescent and fluorescent reporters in a mouse xenograft model. Long-term tumor growth and response to therapy are monitored using bioluminescence imaging (BLI), while numbers of circulating tumor cells are detected by in-vivo flow cytometry. Intravital microscopy is used to detect early seeding of MM cells to the BM, as well as residual cancer cells that remain in the BM after the bulk of the tumor is eradicated following drug treatment. Thus, intravital microscopy provides a powerful, albeit invasive, means to study cellular processes in vivo at the very early stage of the disease process and at the very late stage of therapeutic intervention when the tumor burden is too small to be detected by other imaging methods.
Asunto(s)
Ácidos Borónicos/uso terapéutico , Rastreo Celular/métodos , Citometría de Flujo/métodos , Microscopía Fluorescente/métodos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/fisiopatología , Pirazinas/uso terapéutico , Animales , Antineoplásicos/uso terapéutico , Bortezomib , Línea Celular Tumoral , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones SCID , Mieloma Múltiple/patología , Resultado del TratamientoRESUMEN
In this review we provide a description of the basic concepts and paradigms currently constituting the foundations of adult stem cell biology, and discuss the role that live imaging techniques have in the development of the field. We focus on live imaging of hematopoietic stem cells (HSCs) as the basic biology and clinical applications of HSCs have historically been at the forefront of the stem cell field, and HSC are the first mammalian tissue stem cells to be visualized in vivo using advanced light microscopy techniques. We outline the current technical challenges that remain to be overcome before stem cells and their niche can be more fully characterized using the live imaging technology.