Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Biol Chem ; 286(18): 15832-40, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21398521

RESUMEN

HEL308 is a superfamily II DNA helicase, conserved from archaea through to humans. HEL308 family members were originally isolated by their similarity to the Drosophila melanogaster Mus308 protein, which contributes to the repair of replication-blocking lesions such as DNA interstrand cross-links. Biochemical studies have established that human HEL308 is an ATP-dependent enzyme that unwinds DNA with a 3' to 5' polarity, but little else is know about its mechanism. Here, we show that GFP-tagged HEL308 localizes to replication forks following camptothecin treatment. Moreover, HEL308 colocalizes with two factors involved in the repair of damaged forks by homologous recombination, Rad51 and FANCD2. Purified HEL308 requires a 3' single-stranded DNA region to load and unwind duplex DNA structures. When incubated with substrates that model stalled replication forks, HEL308 preferentially unwinds the parental strands of a structure that models a fork with a nascent lagging strand, and the unwinding action of HEL308 is specifically stimulated by human replication protein A. Finally, we show that HEL308 appears to target and unwind from the junction between single-stranded to double-stranded DNA on model fork structures. Together, our results suggest that one role for HEL308 at sites of blocked replication might be to open up the parental strands to facilitate the loading of subsequent factors required for replication restart.


Asunto(s)
Daño del ADN/fisiología , ADN Helicasas/metabolismo , Reparación del ADN/fisiología , Replicación del ADN/fisiología , ADN/metabolismo , Recombinación Genética/fisiología , Animales , Camptotecina/farmacología , Línea Celular , ADN/genética , Daño del ADN/efectos de los fármacos , ADN Helicasas/genética , Reparación del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Drosophila melanogaster , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Humanos , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Recombinación Genética/efectos de los fármacos , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Inhibidores de Topoisomerasa I/farmacología
2.
Nucleic Acids Res ; 38(6): 1889-901, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20047969

RESUMEN

In budding yeast the DNA helicase Mph1 prevents genome rearrangements during ectopic homologous recombination (HR) by suppressing the formation of crossovers (COs). Here we show that during ectopic HR repair, the anti-CO function of Mph1 is intricately associated with the mismatch repair (MMR) factor, MutSalpha. In particular, during HR repair using a completely homologous substrate, we reveal an MMR-independent function of MutSalpha in generating COs that is specifically antagonized by Mph1, but not Sgs1. In contrast, both Mph1 and MutSalpha are required to efficiently suppress COs in the presence of a homeologous substrate. Mph1 acts redundantly with Sgs1 in this respect since mph1Delta sgs1Delta double mutant cells pheno-copy MutSalpha mutants and completely fail to discriminate homologous and homeologous sequences during HR repair. However, this defect of mph1Delta sgs1Delta cells is not due to an inability to carry out MMR but rather is accompanied by elevated levels of gene conversion (GC) and bi-directional GC tracts specifically in non-crossover products. Models describing how Mph1, MutSalpha and Sgs1 act in concert to suppress genome rearrangements during ectopic HR repair are discussed.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ARN Helicasas DEAD-box/genética , Reparación de la Incompatibilidad de ADN , Proteínas de Unión al ADN/genética , Conversión Génica , Proteína 2 Homóloga a MutS/genética , Mutación , RecQ Helicasas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
3.
J Biol Chem ; 285(15): 11427-32, 2010 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-20178992

RESUMEN

Eukaryotic Holliday junction (HJ) resolvases have attracted much attention recently with the identification of at least three distinct proteins that can cleave model HJs in vitro. However, the specific DNA structure(s) that these proteins act upon in the cell is unknown. Here, we describe a system in budding yeast to directly and quantitatively monitor in vivo HJ resolution. We found that Yen1 acts redundantly with Mus81, but not Slx1, to resolve a model HJ in vivo. This functional overlap specifically extends to the repair/bypass of lesions that impede the progression of replication forks but not to the repair of double-strand breaks induced by ionizing radiation. Together, these results suggest a direct role for Yen1 in the response to DNA damage and implicate overlapping HJ resolution functions of Yen1 with Mus81 during replication fork repair.


Asunto(s)
ADN Cruciforme/metabolismo , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Regulación Fúngica de la Expresión Génica , Resolvasas de Unión Holliday/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Clonación Molecular , Daño del ADN , Reparación del ADN , Replicación del ADN , Proteínas de Unión al ADN/genética , Dimerización , Endonucleasas/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Resolvasas de Unión Holliday/genética , Modelos Biológicos , Plásmidos/metabolismo , Radiación Ionizante , Proteínas de Saccharomyces cerevisiae/genética
4.
Proc Natl Acad Sci U S A ; 105(42): 16107-12, 2008 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-18843105

RESUMEN

Fanconi anemia (FA) is a genetically heterogeneous chromosome instability syndrome associated with congenital abnormalities, bone marrow failure, and cancer predisposition. Eight FA proteins form a nuclear core complex, which promotes tolerance of DNA lesions in S phase, but the underlying mechanisms are still elusive. We reported recently that the FA core complex protein FANCM can translocate Holliday junctions. Here we show that FANCM promotes reversal of model replication forks via concerted displacement and annealing of the nascent and parental DNA strands. Fork reversal by FANCM also occurs when the lagging strand template is partially single-stranded and bound by RPA. The combined fork reversal and branch migration activities of FANCM lead to extensive regression of model replication forks. These observations provide evidence that FANCM can remodel replication fork structures and suggest a mechanism by which FANCM could promote DNA damage tolerance in S phase.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN/genética , Catálisis , ADN Helicasas/genética , Modelos Genéticos
5.
Nature ; 426(6968): 870-4, 2003 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-14685245

RESUMEN

Mutations in BLM, which encodes a RecQ helicase, give rise to Bloom's syndrome, a disorder associated with cancer predisposition and genomic instability. A defining feature of Bloom's syndrome is an elevated frequency of sister chromatid exchanges. These arise from crossing over of chromatid arms during homologous recombination, a ubiquitous process that exists to repair DNA double-stranded breaks and damaged replication forks. Whereas crossing over is required in meiosis, in mitotic cells it can be associated with detrimental loss of heterozygosity. BLM forms an evolutionarily conserved complex with human topoisomerase IIIalpha (hTOPO IIIalpha), which can break and rejoin DNA to alter its topology. Inactivation of homologues of either protein leads to hyper-recombination in unicellular organisms. Here, we show that BLM and hTOPO IIIalpha together effect the resolution of a recombination intermediate containing a double Holliday junction. The mechanism, which we term double-junction dissolution, is distinct from classical Holliday junction resolution and prevents exchange of flanking sequences. Loss of such an activity explains many of the cellular phenotypes of Bloom's syndrome. These results have wider implications for our understanding of the process of homologous recombination and the mechanisms that exist to prevent tumorigenesis.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Síndrome de Bloom/enzimología , Intercambio Genético , ADN Helicasas/metabolismo , ADN Cruciforme/metabolismo , Homología de Secuencia de Ácido Nucleico , ADN-Topoisomerasas de Tipo I/metabolismo , ADN Cruciforme/química , ADN Cruciforme/genética , ADN Superhelicoidal/química , ADN Superhelicoidal/genética , ADN Superhelicoidal/metabolismo , Humanos , Modelos Genéticos , RecQ Helicasas
6.
Bioessays ; 30(4): 291-5, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18348153

RESUMEN

Homologous recombination (HR) is essential for the accurate repair of DNA double-strand breaks and damaged replication forks. However, inappropriate or aberrant HR can also result in genome rearrangements. The maintenance of cell viability is, therefore, a careful balancing act between the benefits of HR (the error-free repair of DNA strand breaks) and the potential detrimental outcomes of HR (chromosomal rearrangements). Two papers have recently provided a mechanistic insight into how HR may be tempered by RecQ helicases to prevent genome instability and diseases that are a consequence of this, such as cancer.


Asunto(s)
Replicación del ADN , Recombinasa Rad51/fisiología , RecQ Helicasas/fisiología , Animales , Aberraciones Cromosómicas , Daño del ADN , Reparación del ADN , Genoma , Humanos , Modelos Biológicos , Recombinación Genética , Saccharomyces cerevisiae/metabolismo
7.
DNA Repair (Amst) ; 6(7): 936-44, 2007 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-17363339

RESUMEN

Genomic DNA is particularly vulnerable to mutation during S-phase when the two strands of parental duplex DNA are separated during the process of semi-conservative DNA replication. Lesions that are normally repaired efficiently in the context of double stranded DNA can cause replication forks to stall or, more dangerously, collapse. Cells from Bloom's syndrome patients, that lack the RecQ helicase BLM, show defects in the response to replicative stress and contain a multitude of chromosomal aberrations, which primarily arise through excessive levels of homologous recombination. Here, recent findings are reviewed that further our understanding of the role that BLM plays in the management of damaged replication forks.


Asunto(s)
Adenosina Trifosfatasas/genética , ADN Helicasas/genética , Replicación del ADN , Adenosina Trifosfatasas/metabolismo , Animales , Síndrome de Bloom/genética , Síndrome de Bloom/metabolismo , Síndrome de Bloom/patología , ADN Helicasas/metabolismo , Humanos , RecQ Helicasas , Recombinación Genética , Intercambio de Cromátides Hermanas
8.
Nucleic Acids Res ; 33(12): 3932-41, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16024743

RESUMEN

The product of the gene mutated in Bloom's syndrome, BLM, is a 3'-5' DNA helicase belonging to the highly conserved RecQ family. In addition to a conventional DNA strand separation activity, BLM catalyzes both the disruption of non-B-form DNA, such as G-quadruplexes, and the branch migration of Holliday junctions. Here, we have characterized a new activity for BLM: the promotion of single-stranded DNA (ssDNA) annealing. This activity does not require Mg(2+), is inhibited by ssDNA binding proteins and ATP, and is dependent on DNA length. Through analysis of various truncation mutants of BLM, we show that the C-terminal domain is essential for strand annealing and identify a 60 amino acid stretch of this domain as being important for both ssDNA binding and strand annealing. We present a model in which the ssDNA annealing activity of BLM facilitates its role in the processing of DNA intermediates that arise during repair of damaged replication forks.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , ADN Helicasas/metabolismo , ADN de Cadena Simple/metabolismo , Adenosina Trifosfatasas/química , ADN Helicasas/química , Reparación del ADN , ADN de Cadena Simple/química , Proteínas de Unión al ADN/metabolismo , Modelos Genéticos , Estructura Terciaria de Proteína , RecQ Helicasas
9.
Nucleic Acids Res ; 30(22): 4823-9, 2002 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-12433984

RESUMEN

Bloom's syndrome (BS) is a disorder associated with chromosomal instability and a predisposition to the development of cancer. The BS gene product, BLM, is a DNA helicase of the RecQ family that forms a complex in vitro and in vivo with topoisomerase IIIalpha. Here, we show that BLM stimulates the ability of topoisomerase IIIalpha to relax negatively supercoiled DNA. Moreover, DNA binding analyses indicate that BLM recruits topoisomerase IIIalpha to its DNA substrate. Consistent with this, a mutant form of BLM that retains helicase activity, but is unable to bind topoisomerase IIIalpha, fails to stimulate topoisomerase activity. These results indicate that a physical association between BLM and topoisomerase IIIalpha is a prerequisite for their functional biochemical interaction.


Asunto(s)
Adenosina Trifosfatasas/farmacología , ADN Helicasas/farmacología , ADN-Topoisomerasas de Tipo I/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , ADN Superhelicoidal/metabolismo , Activación Enzimática , Humanos , Mutación , Conformación de Ácido Nucleico , Transporte de Proteínas , RecQ Helicasas
10.
Mutat Res ; 509(1-2): 35-47, 2002 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-12427530

RESUMEN

The faithful replication of the genome is essential for the survival of all organisms. It is not surprising therefore that numerous mechanisms have evolved to ensure that duplication of the genome occurs with only minimal risk of mutation induction. One mechanism of genome destabilization is replication fork demise, which can occur when a translocating fork meets a lesion or adduct in the template. Indeed, the collapse of replication forks has been suggested to occur in every replicative cell cycle making this a potentially significant problem for all proliferating cells. The RecQ helicases, which are essential for the maintenance of genome stability, are thought to function during DNA replication. In particular, RecQ helicase mutants display replication defects and have phenotypes consistent with an inability to efficiently reinitiate replication following replication fork demise. Here, we review some current models for how replication fork repair might be effected, and discuss potential roles for RecQ helicases in this process.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Daño del ADN , ADN Helicasas/fisiología , Adenosina Trifosfatasas/genética , Animales , ADN Helicasas/genética , Replicación del ADN , Drosophila melanogaster/enzimología , Humanos , Modelos Genéticos , Mutación , RecQ Helicasas , Levaduras/enzimología
11.
Artículo en Inglés | MEDLINE | ID: mdl-24741322

RESUMEN

BACKGROUND: Pyoderma gangrenosum (PG) is a rare dermatological condition characterized by the rapid progression of a painful, necrolytic ulcer with an irregular, undermined border and commonly affects the lower extremities, mainly in the pretibial area. The diagnosis of PG is not easy. Due to lack of diagnostic laboratory test and histopathological findings indicative of PG, it is often misdiagnosed as an infection. This results in delayed or inappropriate treatment of the condition, which leads to devastating consequences such as limb amputation and death. MAIN OBSERVATIONS: We report a rare case of a 51-year-old female who was initially diagnosed as having infected ulcers and underwent serial debridements, which resulted in extensive PG at three different sites (abdominal, left thigh, and sacral). CONCLUSION: This case highlights the challenges in diagnosing PG, emphasizes the key clinical features to aid diagnosis, and the clinical consequences of delayed or misdiagnosis of this condition.

12.
Annu Rev Genet ; 40: 279-306, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16856806

RESUMEN

DNA helicases are found in all kingdoms of life and function in all DNA metabolic processes where the two strands of duplex DNA require to be separated. Here, we review recent developments in our understanding of the roles that helicases play in the intimately linked processes of replication fork repair and homologous recombination, and highlight how the cell has evolved many distinct, and sometimes antagonistic, uses for these enzymes.


Asunto(s)
Daño del ADN/fisiología , ADN Helicasas/metabolismo , Reparación del ADN , Recombinación Genética , Animales , ADN Helicasas/genética , Replicación del ADN , Humanos
13.
J Biol Chem ; 281(32): 22839-46, 2006 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-16766518

RESUMEN

Homozygous inactivation of BLM gives rise to Bloom's syndrome, a disorder associated with genomic instability and cancer predisposition. BLM encodes a member of the RecQ DNA helicase family that is required for the maintenance of genome stability and the suppression of sister-chromatid exchanges. BLM has been proposed to function in the rescue of replication forks that have collapsed or stalled as a result of encountering lesions that block fork progression. One proposed mechanism of fork rescue involves regression in which the nascent leading and lagging strands anneal to create a so-called "chicken foot" structure. Here we have developed an in vitro system for analysis of fork regression and show that BLM, but not Escherichia coli RecQ, can promote the regression of a model replication fork. BLM-mediated fork regression is ATP-dependent and occurs processively, generating regressed arms of >250 bp in length. These data establish the existence of a eukaryotic protein that could promote replication fork regression in vivo and suggest a novel pathway through which BLM might suppress genetic exchanges.


Asunto(s)
Adenosina Trifosfatasas/genética , ADN Helicasas/genética , Replicación del ADN , Homocigoto , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/fisiología , ADN Helicasas/metabolismo , ADN Helicasas/fisiología , ADN Cruciforme , ADN Superhelicoidal , Escherichia coli/metabolismo , Humanos , Modelos Biológicos , Modelos Genéticos , RecQ Helicasas , Recombinación Genética , Intercambio de Cromátides Hermanas
14.
Proc Natl Acad Sci U S A ; 103(11): 4068-73, 2006 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-16537486

RESUMEN

BLM encodes a member of the highly conserved RecQ DNA helicase family, which is essential for the maintenance of genome stability. Homozygous inactivation of BLM gives rise to the cancer predisposition disorder Bloom's syndrome. A common feature of many RecQ helicase mutants is a hyperrecombination phenotype. In Bloom's syndrome, this phenotype manifests as an elevated frequency of sister chromatid exchanges and interhomologue recombination. We have shown previously that BLM, together with its evolutionarily conserved binding partner topoisomerase IIIalpha (hTOPO IIIalpha), can process recombination intermediates that contain double Holliday junctions into noncrossover products by a mechanism termed dissolution. Here we show that a recently identified third component of the human BLM/hTOPO IIIalpha complex, BLAP75/RMI1, promotes dissolution catalyzed by hTOPO IIIalpha. This activity of BLAP75/RMI1 is specific for dissolution catalyzed by hTOPO IIIalpha because it has no effect in reactions containing either Escherichia coli Top1 or Top3, both of which can also catalyze dissolution in a BLM-dependent manner. We present evidence that BLAP75/RMI1 acts by recruiting hTOPO IIIalpha to double Holliday junctions. Implications of the conserved ability of type IA topoisomerases to catalyze dissolution and how the evolution of factors such as BLAP75/RMI1 might confer specificity on the execution of this process are discussed.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Portadoras/metabolismo , ADN Helicasas/metabolismo , Recombinación Genética , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Síndrome de Bloom/genética , Síndrome de Bloom/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/genética , ADN Helicasas/química , ADN Helicasas/genética , ADN-Topoisomerasas de Tipo I/química , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , ADN Cruciforme/química , ADN Cruciforme/genética , ADN Cruciforme/metabolismo , Proteínas de Unión al ADN , Escherichia coli/genética , Humanos , Técnicas In Vitro , Complejos Multiproteicos , Proteínas Nucleares , Fenotipo , Unión Proteica , RecQ Helicasas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Intercambio de Cromátides Hermanas
15.
EMBO J ; 24(14): 2679-87, 2005 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-15990871

RESUMEN

Bloom's syndrome is a hereditary cancer-predisposition disorder resulting from mutations in the BLM gene. In humans, BLM encodes one of five members of the RecQ helicase family. One function of BLM is to act in concert with topoisomerase IIIalpha (TOPO IIIalpha) to resolve recombination intermediates containing double Holliday junctions by a process called double Holliday junction dissolution, herein termed dissolution. Here, we show that dissolution is highly specific for BLM among human RecQ helicases and critically depends upon a functional HRDC domain in BLM. We show that the HRDC domain confers DNA structure specificity, and is required for the efficient binding to and unwinding of double Holliday junctions, but not for the unwinding of a simple partial duplex substrate. Furthermore, we show that lysine-1270 of BLM, which resides in the HRDC domain and is predicted to play a role in mediating interactions with DNA, is required for efficient dissolution.


Asunto(s)
Adenosina Trifosfatasas/genética , ADN Helicasas/genética , ADN Cruciforme/metabolismo , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Síndrome de Bloom/genética , Síndrome de Bloom/metabolismo , ADN Helicasas/metabolismo , Humanos , Lisina/metabolismo , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , RecQ Helicasas , Análisis de Secuencia de Proteína
16.
Nephrol Dial Transplant ; 18(7): 1286-92, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12808163

RESUMEN

BACKGROUND: Vascular endothelial growth factor (VEGF) is constitutively expressed in the glomerulus where it may have a role in the maintenance of capillary endothelial cell integrity. The present study sought to examine changes in VEGF expression in a model of progressive renal disease and to assess the effects of angiotensin converting enzyme (ACE) inhibition. METHODS: Subtotal nephrectomized (STNx) rats were randomly assigned to receive vehicle (n=10) or the ACE inhibitor perindopril (8 mg/l drinking water) for 12 weeks duration (n=10). Sham-operated rats were used as controls (n=10). Glomerular capillary endothelial cell density was evaluated by immunostaining for the pan-endothelial cell marker RECA-1 and VEGF expression was assessed by quantitative in situ hybridization. RESULTS: In STNx rats glomerular capillary endothelial cell density was reduced to 19% that of sham rats (P<0.01) with a concomitant reduction in glomerular VEGF expression, also to 19% of sham rats (P<0.01). Perindopril treatment was associated with normalization of both capillary endothelial cell density and glomerular VEGF mRNA. CONCLUSIONS: Reduction in glomerular VEGF expression is a feature of the renal pathology that follows subtotal nephrectomy. In the context of the known functions of this growth factor, these findings suggest that diminution in VEGF may contribute to the demonstrated loss of glomerular endothelium that develops in this model of progressive renal disease.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Factores de Crecimiento Endotelial/análisis , Factores de Crecimiento Endotelial/genética , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiopatología , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/fisiopatología , Glomérulos Renales/química , Glomérulos Renales/efectos de los fármacos , Perindopril/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/análisis , Factor A de Crecimiento Endotelial Vascular/genética , Animales , Recuento de Células , Modelos Animales de Enfermedad , Endotelio Vascular/patología , Hibridación in Situ , Enfermedades Renales/patología , Glomérulos Renales/patología , Masculino , Ratas , Ratas Sprague-Dawley , Factor A de Crecimiento Endotelial Vascular/efectos de los fármacos
17.
J Biol Chem ; 279(11): 9847-56, 2004 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-14688284

RESUMEN

Bloom's syndrome (BS) is a rare autosomal recessive genetic disorder associated with genomic instability and an elevated risk of cancer. Cellular features of BS include an accumulation of abnormal replication intermediates and increased sister chromatid exchange. Although it has been suggested that the underlying defect responsible for hyper-recombination in BS cells is a temporal delay in the maturation of DNA replication intermediates, the precise role of the BS gene product, BLM, in DNA metabolism remains elusive. We report here a novel interaction of the BLM protein with the human 5'-flap endonuclease/5'-3' exonuclease (FEN-1), a genome stability factor involved in Okazaki fragment processing and DNA repair. BLM protein stimulates both the endonucleolytic and exonucleolytic cleavage activity of FEN-1 and this functional interaction is independent of BLM catalytic activity. BLM and FEN-1 are associated with each other in human nuclei as shown by their reciprocal co-immunoprecipitation from HeLa nuclear extracts. The BLM-FEN-1 physical interaction is mediated through a region of the BLM C-terminal domain that shares homology with the FEN-1 interaction domain of the Werner syndrome protein, a RecQ helicase family member homologous to BLM. This study provides the first evidence for a direct interaction of BLM with a human nucleolytic enzyme. We suggest that functional interactions between RecQ helicases and Rad2 family nucleases serve to process DNA substrates that are intermediates in DNA replication and repair.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , ADN Helicasas/metabolismo , Endonucleasas de ADN Solapado/metabolismo , Amilosa/química , Catálisis , Núcleo Celular/metabolismo , ADN/química , ADN/metabolismo , Reparación del ADN , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta a Droga , Endodesoxirribonucleasas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Exodesoxirribonucleasas , Células HeLa , Humanos , Cinética , Modelos Genéticos , Oligonucleótidos/química , Pruebas de Precipitina , Unión Proteica , RecQ Helicasas , Proteínas Recombinantes/química , Recombinación Genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Tiempo , Helicasa del Síndrome de Werner
18.
J Biol Chem ; 278(48): 48357-66, 2003 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-12975363

RESUMEN

Bloom's syndrome (BS) is a genetic disorder associated with short stature, fertility defects, and a predisposition to the development of cancer. BS cells are characterized by genomic instability; in particular, a high rate of reciprocal exchanges between sister-chromatids and homologous chromosomes. The BS gene product, BLM, is a helicase belonging to the highly conserved RecQ family. BLM is known to form a complex with the RAD51 recombinase, and to act upon DNA intermediates that form during homologous recombination, including D-loops and Holliday junctions. Here, we show that BLM also makes a direct physical association with the RAD51L3 protein (also known as RAD51D), a so-called RAD51 paralog that shows limited sequence similarity to RAD51 itself. This interaction is mediated through the N-terminal domain of BLM. To analyze functional interactions between BLM and RAD51L3, we have purified a heteromeric complex comprising RAD51L3 and a second RAD51 paralog, XRCC2. We show that the RAD51L3-XRCC2 complex stimulates BLM to disrupt synthetic 4-way junctions that model the Holliday junction. We also show that a truncated form of BLM, which retains helicase activity but is unable to bind RAD51L3, is not stimulated by the RAD51L3-XRCC2 complex. Our data indicate that the activity of BLM is modulated through an interaction with the RAD51L3-XRCC2 complex, and that this stimulatory effect on BLM is dependent upon a direct physical association between the BLM and RAD51L3 proteins. We propose that BLM co-operates with RAD51 paralogs during the late stages of homologous recombination processes that serve to restore productive DNA replication at sites of damaged or stalled replication forks.


Asunto(s)
Adenosina Trifosfatasas/química , ADN Helicasas/química , Proteínas de Unión al ADN/química , Adenosina Trifosfatasas/metabolismo , Western Blotting , Línea Celular , Citoplasma/metabolismo , ADN/metabolismo , ADN Helicasas/metabolismo , ADN Complementario/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Glutatión Transferasa/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Modelos Genéticos , Oligonucleótidos/química , Pruebas de Precipitina , Unión Proteica , Estructura Terciaria de Proteína , Recombinasa Rad51 , RecQ Helicasas , Recombinación Genética , Intercambio de Cromátides Hermanas , Factores de Tiempo , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA