Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Death Dis ; 15(8): 591, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39143050

RESUMEN

Neurons rely heavily on high mitochondrial metabolism to provide sufficient energy for proper development. However, it remains unclear how neurons maintain high oxidative phosphorylation (OXPHOS) during development. Mitophagy plays a pivotal role in maintaining mitochondrial quality and quantity. We herein describe that G protein-coupled receptor 50 (GPR50) is a novel mitophagy receptor, which harbors the LC3-interacting region (LIR) and is required in mitophagy under stress conditions. Although it does not localize in mitochondria under normal culturing conditions, GPR50 is recruited to the depolarized mitochondrial membrane upon mitophagy stress, which marks the mitochondrial portion and recruits the assembling autophagosomes, eventually facilitating the mitochondrial fragments to be engulfed by the autophagosomes. Mutations Δ502-505 and T532A attenuate GPR50-mediated mitophagy by disrupting the binding of GPR50 to LC3 and the mitochondrial recruitment of GPR50. Deficiency of GPR50 causes the accumulation of damaged mitochondria and disrupts OXPHOS, resulting in insufficient ATP production and excessive ROS generation, eventually impairing neuronal development. GPR50-deficient mice exhibit impaired social recognition, which is rescued by prenatal treatment with mitoQ, a mitochondrially antioxidant. The present study identifies GPR50 as a novel mitophagy receptor that is required to maintain mitochondrial OXPHOS in developing neurons.


Asunto(s)
Mitocondrias , Mitofagia , Neuronas , Receptores Acoplados a Proteínas G , Animales , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Neuronas/metabolismo , Mitocondrias/metabolismo , Ratones , Humanos , Fosforilación Oxidativa , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Especies Reactivas de Oxígeno/metabolismo , Ratones Noqueados , Neurogénesis
2.
Cells ; 11(3)2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35159260

RESUMEN

Excitatory-inhibitory imbalance (E/I) is a fundamental mechanism underlying autism spectrum disorders (ASD). TRIM32 is a risk gene genetically associated with ASD. The absence of TRIM32 causes impaired generation of inhibitory GABAergic interneurons, neural network hyperexcitability, and autism-like behavior in mice, emphasizing the role of TRIM32 in maintaining E/I balance, but despite the description of TRIM32 in regulating proliferation and differentiation of cultured mouse neural progenitor cells (NPCs), the role of TRIM32 in cerebral cortical development, particularly in the production of excitatory pyramidal neurons, remains unknown. The present study observed that TRIM32 deficiency resulted in decreased numbers of distinct layer-specific cortical neurons and decreased radial glial cell (RGC) and intermediate progenitor cell (IPC) pool size. We further demonstrated that TRIM32 deficiency impairs self-renewal of RGCs and IPCs as indicated by decreased proliferation and mitosis. A TRIM32 deficiency also affects or influences the formation of cortical neurons. As a result, TRIM32-deficient mice showed smaller brain size. At the molecular level, RNAseq analysis indicated reduced Notch signalling in TRIM32-deficient mice. Therefore, the present study indicates a role for TRIM32 in pyramidal neuron generation. Impaired generation of excitatory pyramidal neurons may explain the hyperexcitability observed in TRIM32-deficient mice.


Asunto(s)
Corteza Cerebral , Células-Madre Neurales , Células Piramidales , Ubiquitina-Proteína Ligasas , Animales , Corteza Cerebral/citología , Ratones , Células-Madre Neurales/citología , Neurogénesis/genética , Neuronas/citología , Células Piramidales/citología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
3.
ACS Omega ; 5(19): 11196-11201, 2020 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-32455243

RESUMEN

In this paper, a palm-size digital microfluidic (DMF) platform integrated with colorimetric analysis was developed for quantifying the concentration of nitrite. To realize the on-chip repeatable colorimetric analysis, a novel printed circuit board (PCB)-based DMF chip was designed with an embedded aperture on the actuator electrode, forming a vertical light path for online measurement of the droplets. The capabilities of the DMF platform enable automatic manipulation of microliter-level droplets to implement Griess assay without the use of external systems such as syringe, pump, or valve, which provides the benefits including high flexibility, portability, miniature size, and low cost. Results indicated the characteristics of good linearity (R 2 = 0.9974), the ignorable crosstalk for reusability, and the limit of detection (LOD) of nitrite as low as 5 µg/L. Furthermore, the presented platform was successfully applied to determine nitrite levels in food products with reliable results and satisfactory recoveries. This integrated DMF platform can be a promising new tool for a wide range of applications involving step-by-step solution mixing and optical detection in environmental monitoring, food safety analysis, and point-of-care testing.

4.
Neural Regen Res ; 20(1): 6-20, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38767472

RESUMEN

The endoplasmic reticulum, a key cellular organelle, regulates a wide variety of cellular activities. Endoplasmic reticulum autophagy, one of the quality control systems of the endoplasmic reticulum, plays a pivotal role in maintaining endoplasmic reticulum homeostasis by controlling endoplasmic reticulum turnover, remodeling, and proteostasis. In this review, we briefly describe the endoplasmic reticulum quality control system, and subsequently focus on the role of endoplasmic reticulum autophagy, emphasizing the spatial and temporal mechanisms underlying the regulation of endoplasmic reticulum autophagy according to cellular requirements. We also summarize the evidence relating to how defective or abnormal endoplasmic reticulum autophagy contributes to the pathogenesis of neurodegenerative diseases. In summary, this review highlights the mechanisms associated with the regulation of endoplasmic reticulum autophagy and how they influence the pathophysiology of degenerative nerve disorders. This review would help researchers to understand the roles and regulatory mechanisms of endoplasmic reticulum-phagy in neurodegenerative disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA